
Combinational and Sequential Circuits. 

Basically, sequential circuits have memory and combinational circuits do not. 

Here is a basic depiction of a sequential circuit. 

 

All sequential circuits contain combinational logic in addition to the memory elements. 

We now consider the analysis and design of sequential circuits. 



Sequential Circuits 

Sequential circuits are those with memory, also called “feedback”.  In this, they differ 

 from combinational circuits, which have no memory. 

The stable output of a combinational circuit does not depend on the order in which its 

 inputs are changed.  The stable output of a sequential circuit usually does depend 

 on the order in which the inputs are changed. 

Sequential circuits can be used as memory elements; binary values can be stored in them. 

The binary value stored in a circuit element is often called that element’s state. 

All sequential circuits depend on a phenomenon called gate delay.  This reflects the fact 

 that the output of any logic gate (implementing a Boolean function) does not change 

 immediately when the input changes, but only some time later. 

The gate delay for modern circuits is typically a few nanoseconds. 

 

 



Synchronous Sequential Circuits 

We usually focus on clocked sequential circuits,  

  also called synchronous sequential circuits. 

As the name “synchronous” implies, these circuits respond to a system clock, 

which is used to synchronize the state changes of the various sequential circuits. 

One textbook claims that “synchronous sequential circuits use clocks to order events.”  A 

better claim might be that the clock is used to coordinate events.  Events that should 

happen at the same time do; events that should happen later do happen later. 

The system clock is a circuit that emits a sequence of regular pulses with a fixed and 

reliable pulse rate.  If you have an electronic watch (who doesn’t?), what you have is a 

small electronic circuit emitting pulses and a counter circuit to count them. 

Clock frequencies are measured in  

 kilohertz   thousands of ticks per second 

 megahertz  millions of ticks per second 

 gigahertz   billions of ticks per second. 

One can design asynchronous sequential circuits, which are not controlled by a system 

clock.  They present significant design challenges related to timing issues. 



Views of the System Clock 

There are a number of ways to view the system clock.  In general, the view depends on 

the detail that we need in discussing the problem.  The logical view is shown in the next 

figure, which illustrates some of the terms commonly used for a clock. 

 

 

The clock is typical of a periodic function.  There is a period  for which 

f(t) = f(t + ) 

This clock is asymmetric.  It is often the case that the clock is symmetric, where the 

time spent at the high level is the same as that at the low level.  Your instructor often 

draws the clock as asymmetric, just to show that such a design is allowed. 

NOTATION:   We always call the present clock tick “t” and the next one “t + 1”, even 

if it occurs only two nanoseconds later. 



Views of the System Clock 

 

The top view is the “real physical view”.  It is seldom used. 

The middle view reflects the fact that voltage levels do not change instantaneously. 

 We use this view when considering system busses. 



Clock Period and Frequency 

If the clock period is denoted by , then the frequency (by definition) is f = 1 / . 

 

For example, if  = 2.0 nanoseconds, also written as  = 2.010–9 seconds, then 

f = 1 / (2.010–9 seconds) = 0.50109 seconds–1 or 500 megahertz. 

 

If f = 2.5 Gigahertz, also written as 2.5109 seconds–1, then  

 = 1.0 / (2.5109 seconds–1) = 0.410–9 seconds = 0.4 nanosecond. 

 



Latches and Flip–Flops: First Definition 

We consider a latch or a flip–flop as a device that stores a single binary value. 

Flip–flops and clocked latches are devices that accept input at fixed times dictated by the 

system clock.  For this reason they are called “synchronous sequential circuits”. 

Denote the present time by the symbol t.  Denote the clock period by . 

Rather than directly discussing the clock period, we merely say that 

 the current time is t 

 after the next clock tick the time is (t + 1) 

The present state of the device is often called Q(t) 

The next state of the device is often called Q(t + 1) 

 

The sequence: the present state is Q(t), the clock “ticks”, the state is now Q(t + 1) 

AGAIN:  We call the next state Q(t + 1), even if the transition from Q(t) to  

   Q(t + 1) takes only a few nanoseconds.  We are counting the actual 

   number of clock ticks, not the amount of time they take. 



Latches and Flip–Flops: When Triggered 

Clocked latches accept input when the system clock is at logic high. 

 

Flip–flops accept input on either the rising edge of the system clock. 

 



Advantages of Flip–Flops 

When either a flip–flop or a latch is used as a part of a circuit, we have the problem of 

feedback.  In this, the output of the device is processed and then used as input. 

Example: The flip–flop is a part of a register that is to be incremented. 

 

We define the data path for the computer as following the output of the flip–flop 

through the processing elements and back to the input of the flip–flop. 

The data path time is the amount of time that it takes the data to travel the data path. 

If this time is too short, the processed output of the flip–flop can get back to its input 

during the time when the flip–flop remains sensitive to its input. 

 

A flip–flop is a latch that has been modified to minimize the time during which the 

device responds to its input. 

This minimizes the possibility of uncontrolled feedback as associated instabilities. 

 

In this course, we shall ignore latches and focus only on flip–flops. 



Describing Flip–Flops 

A flip–flop is a “bit bucket”; it holds a single binary bit. 

A flip–flop is characterized by its current state: Q(t). 

 

We want a way to describe the operation of the flip–flops. 

How do these devices respond to the input?  We use tables to describe the operation. 

 

Characteristic tables: Given Q(t), the present state of the flip–flop, and 

     the input, what will Q(t + 1), the next state of the flip–flop, be? 

 

Excitation tables:  Given Q(t), the present state of the flip–flop, and 

     Q(t + 1), the desired next state of the flip–flop, 

     what input is required to achieve that change. 



Functional Definition of Flip–Flops 

We use the characteristic table to describe both latches and flip–flops. 

The characteristic table takes the present state and input and shows the next state. 

 

Here is the characteristic table for a flip–flop. 

S R Present State Next State 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 ERROR 

1 1 1 ERROR 

At the moment, we are just showing the structure of a characteristic table. 

We shall explain later the meaning of “ERROR” and 

associate the table with an SR flip–flop. 



Characteristic Tables 

We often take a table such as 

S R Present State Next State 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 ERROR 

1 1 1 ERROR 

And abbreviate it as 

S R Q(t + 1) = Next State 

0 0 Q(t) 
0 1 0 

1 0 1 

1 1 ERROR 

 



Comment on Notation Used 

All flip–flops have a number of inputs that your instructor does not indicate unless they 

are required for discussion of the circuit. 

Power    every flip–flop must be powered 

Ground    every flip–flop must be grounded 

Clock    all flip–flops are clocked devices 

Asynchronous Clear this allows the flip–flop to be cleared independently of the 

     clock.  In other words, make Q(t) = 0. 

Asynchronous Set  this allows the flip–flop to be set independently of the 

     clock.  In other words, make Q(t) = 1. 

 

Absent the explicit clock input, your instructor’s circuits might resemble unclocked 

latches.  Your instructor does not use such latches, but designs only with flip–flops. 



SR Flip–Flop 

We now adopt a functional view.  How does the next state depend on the present state 

and input.  A flip–flop is a “bit holder”. 

Here is the diagram for the SR flip–flop. 

 

Here again is the state table for the SR flip–flop. 

S R Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1 ERROR 

Note that setting both S = 1 and R = 1 causes the flip–flop to enter a logically 

inconsistent state, followed by an indeterministic, almost random, state.  For this reason, 

we label the output for S = 1 and R = 1 as an error. 



We Need Another Flip–Flop 

Consider the characteristic table for the SR flip–flop. 

It is the same as that for the SR latch, except for the explicit reference to the clock. 

S R Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1 ERROR 

Were we to modify the SR flip–flop, what could be placed in the last row? 

It is easy to see that there are only four Boolean functions of a single Boolean variable Q. 

F(Q) = 0, F(Q) = Q, F(Q) = Q , and F(Q) = 1.  The above table is missing Q . 

This gives rise to the JK, the most general of the flip–flops.  Its characteristic table is: 

J K Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1  tQ  

 



JK Flip–Flop 

A JK flip–flop generalizes the SR to allow for both inputs to be 1.   

 

Here is the characteristic table for a JK flip–flop. 

J K Q(t + 1) 

0 0 Q(t) 

0 1 0 

1 0 1 

1 1  tQ  

Note that the flip–flop can generate all four possible functions of a single variable: 

 the two constants 0 and 1 

 the variables Q and Q . 



The D Flip–Flop 

The D flip–flop specializes either the SR or JK to store a single bit.  It is very useful for 

interfacing the CPU to external devices, where the CPU sends a brief pulse to set the 

value in the device and it remains set until the next CPU signal. 

 

The characteristic table for the D flip–flop is so simple that it is expressed better as the 

equation Q(t + 1) = D.  Here is the table. 

D Q(t + 1) 

0 0 

1 1 

The excitation equation for a D flip–flop is quite simple: D = Q(t + 1). 



The T Flip–Flop 

The “toggle” flip–flop allows one to change the value stored.  It is often used in circuits 

in which the value of the bit changes between 0 and 1, as in a modulo–4 counter in which 

the low–order bit goes 0, 1, 0, 1, 0, 1, etc. 

 

The characteristic table for the T flip–flop is so simple that it is expressed better as the 

equation Q(t + 1) = Q(t)  T.  Here is the table. 

T Q(t + 1) 

0 Q(t) 

1  tQ  

The excitation equation for a T flip–flop is also quite simple: T = Q(t)  Q(t + 1). 

Here the symbol “T” denotes the input; “t” and “t + 1” denote time. 



The JK Flip–Flop as a General–Use Flip–Flop 

The JK flip–flop can be used to implement any of the other three flip–flops. 

As a D flip–flop 

 

As a T flip–flop 

 

As an SR flip–flop.  Just never use J = 1 and K = 1 as simultaneous inputs. 



Excitation Table for an SR Flip–Flop 

Here again is the state table for the SR flip–flop. 

S R Q(t + 1) 

0 0 Q(t) 
0 1 0 

1 0 1 

1 1 Error 

We now derive the excitation table. 

If Q(t) = 0 and we want Q(t + 1) = 0, there are two choices: 

 S = 0 and R = 0 maintains the same state, so Q(t + 1) = Q(t) = 0. 

 S = 0 and R = 1 forces Q(t + 1) = 0. 

If S = 0, then the next state will be Q(t + 1) = 0 without regard to R.  We say S = 0, R = d. 

Here is the Excitation Table for an SR Flip–Flop. 

Q(t) Q(t + 1) S R 

0 0 0 d 

0 1 1 0 

1 0 0 1 

1 1 d 0 



JK Flip–Flop 

A JK flip–flop generalizes the SR to allow for both inputs to be 1.   

 

Here is the characteristic table for a JK flip–flop. 

J K Q(t + 1) 

0 0 Q(t) 
0 1 0 

1 0 1 

1 1  tQ  

Here is the Excitation Table for a JK Flip–Flop. 

Q(t) Q(t + 1) J K 

0 0 0 d 

0 1 1 d 

1 0 d 1 

1 1 d 0 
 



Finite State Machines: Notation 

In this course, we represent sequential circuits as finite state machines. 

A Finite State Machine (FSM) is a circuit that can exist in a finite number of states, 

usually a rather small number.  Finite State Machines with more than 32 states are rare. 

The FSM has a memory that stores its state. 

If the FSM has N states, then its memory can be implemented with P flip–flops where 

2
P–1

 < N  2
P
 

Typical values:  3 states 2 flip–flops 

     4 states 2 flip–flops 

     5 states 3 flip–flops 

     8 states 3 flip–flops 

Tools to describe finite states machines include 

1) The state diagram 

2) The state table 



State Diagram for a Modulo–4 Counter 

Here is the state diagram for a modulo–4 counter. 

There is no input but the clock.  It just counts clock pulses. 

Note the direction of the arrows; this is an up–counter. 

 

 



Design a Modulo–4 Counter 

Step 1: Derive the state diagram and state table for the circuit. 

Here is the state diagram.  Note that it is quite simple and involves no input. 

 

Here is the state table for the modulo–4 counter 

Present State Next State 

0 1 

1 2 

2 3 

3 0 

 



Step 2: Count the Number of States 

Obviously, there are only four states, numbered 0 through 3. 

 

Determine the number of flip–flops needed. 

Solve 2P–1 < N  2P.  If N = 4, we have P = 2 and 21 < 4  22. 

We need two flip–flops for this design.  Number them 1 and 0. 

Their states will be Q1 and Q0 or Y1 and Y0, depending on the context. 

 

Remember: 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128, etc. 



Step 3 Assign a unique P-bit binary number (state vector) 

to each state. 

Here P = 2, so we assign a unique 2–bit number to each state. 

For a number of reasons the first state, state 0, must be assigned Y1 = 0 and Y0 = 0. 

For a counter, there is only one assignment that is not complete nonsense. 

State 2-bit Vector 

0 0 0 

1 0 1 

2 1 0 

3 1 1 

The 2–bit vectors are just the unsigned binary equivalent of the decimal state numbers. 

 



Step 4 Derive the state transition table. 

Present State Next State 

0 00 01 

1 01 10 

2 10 11 

3 11 00 

Strictly speaking, we should have dropped the decimal labels in this step. 

However, this representation is often useful for giving the binary numbers. 

 

The state transition table tells us what the required next state will be 

for each present state. 



Step 5 Separate the state transition table into P tables, 

one for each flip-flop. 

Here P = 2, so we need two tables. 

 

Flip-Flop 1  Flip-Flop 0 

Present State Next State  Present State Next State 

Y1 Y0 Y1( t+1 )  Y1 Y0 Y0( t+1 ) 

0    0 0  0    0 1 

0    1 1  0    1 0 

1    0 1  1    0 1 

1    1 0  1    1 0 

Each flip–flop is represented with the complete present state and its own next state. 

 



Step 6 Decide on the types of flip-flops to use. 

When in doubt, use all JK’s. 

Our design will use JK flip–flops. 

For design work, it is important that we remember the excitation table. 

Here it is. 

Q( t ) Q( t+1 ) J K 

0 0 0 d 

0 1 1 d 

1 0 d 1 

1 1 d 0 

 



Step 7 Derive the input table for each flip-flop using the 

excitation tables for the type. 

Here is the table for flip–flop 1. 

PS NS Input 

Y1 Y0 Y1 J1 K1 

0 0 0 0 d 

0 1 1 1 d 

1 0 1 d 0 

1 1 0 d 1 

 

Here is the table for flip–flop 0. 

PS NS Input 

Y1 Y0 Y0 J0 K0 

0 0 1 1 d 

0 1 0 d 1 

1 0 1 1 d 

1 1 0 d 1 

 



Step 8 Derive the input equations for each flip-flop 

I use a set of intuitive rules based on observation and not on formal methods. 

1) If a column does not have a 0 in it, match it to the constant value 1. 

 If a column does not have a 1 in it, match it to the constant value 0. 

2) If the column has both 0’s and 1’s in it, try to match it to a single variable, 

 which must be part of the present state.  Only the 0’s and 1’s in a column 

 must match the suggested function. 

3) If every 0 and 1 in the column is a mismatch, match to the complement 

 of a function or a variable in the present state. 

4) If all the above fails, try for simple combinations of the present state. 

NOTE: The use of the complement of a state in step 3 is due to the fact that 

  each flip–flop outputs both its state and the complement of its state. 



Step 8 Derive the input equations for each flip-flop 

Here is the input table for Flip–Flop 1 

PS NS Input 

Y1 Y0 Y1 J1 K1 

0 0 0 0 d 

0 1 1 1 d 

1 0 1 d 0 

1 1 0 d 1 

 J1 = Y0 K1 = Y0  

Here is the input table for Flip–Flop 0 

PS NS Input 

Y1 Y0 Y0 J0 K0 

0 0 1 1 d 

0 1 0 d 1 

1 0 1 1 d 

1 1 0 d 1 

 J0 = 1 K0 = 1 



Step 9 Summarize the equations by writing them in one place. 

Here they are. 

 J1 = Y0  K1 = Y0 

 J0 = 1  K0 = 1  

 

 


