
Chapter 5 Arithmetic Operations

Page 127 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Chapter 5 – Arithmetic Operations and the ALU

The subject for this chapter is the ALU (Arithmetic Logic Unit) of a typical stored program

computer. This chapter, by necessity, includes materials on binary addition (half adders, full

adders, and several parallel adders), binary subtraction, binary shifting, and binary multiplication

as implemented by a simplistic algorithm. In this chapter, we shall reserve the plus symbol “+”

for addition and the multiplication symbol “” for that operation.

As an extension of the arithmetic operations, we shall consider the basic logical operations of the

ALU. While some textbooks include a discussion of floating–point arithmetic in a chapter such

as this, we note the common practice of assigning all such operations to a coprocessor.

The first thing to note in this chapter is that we are contemplating a significant leap in our

reasoning, one that normally merits very little mention in most textbooks. We are planning to

use the tools of Boolean algebra in the service of binary arithmetic. But arithmetic and Boolean

algebra are completely different topics, built on completely different axiomatic bases.

Despite these significant theoretical differences, there is a mapping between Boolean algebra and

binary arithmetic that allows the use of Boolean digital gates in arithmetic circuits. We shall

investigate this mapping in the form of truth tables (from Boolean algebra) for two types of

addition in binary arithmetic.

Review of Basic Addition

Consider the decimal number 139. To be precise, this is not a number but a collection of

symbols each used to represent a number. We know that the digit “1” represents the number 1,

the digit “3” represents the number 3, and the digit “9” represents the number 9. The association

of the character string “139” with the number 139 is based on positional notation, which states

that 139 = 1100 + 310 + 91 = 110
2
 + 310

1
 + 910

0
.

The above example assumes decimal (base 10) notation, which is the notation most commonly

used by humans for representing integers. In our studies of digital computers, we must consider

not only decimal numbers but also binary (base 2), octal (base 8) and hexadecimal (base 16). It

is conventional to represent the base of every number system as a decimal number. Any other

approach would lead to considerable confusion.

In a positional number system, the value of a string of digits is expressed in terms of powers of

the base B. Consider the four-digit number, denoted in the abstract as D3D2D1D0. The value of

this number is given by D3B
3
 + D2B

2
 + D1B

1
 + D0B

0
. For example, consider the number

1101. The value of this number depends on the base of the number system.

In decimal notation, we have 110
3
 + 110

2
 + 010

1
 + 110

0
 = 11000 + 1100 + 010 + 11 =

1000 + 100 +1 = 110110.

In octal numbers (base 8), we have

 11018 = 18
3
 + 18

2
 + 08

1
 + 18

0
 = 1512 + 164 + 08 + 11 = 57710.

In hexadecimal numbers (base 16), we have

 110116 = 116
3
 + 116

2
 + 016

1
 + 116

0
 = 14096 + 1256 + 016 + 11 = 445310.

In binary numbers (base 2), we have

 11012 = 12
3
 + 12

2
 + 02

1
 + 12

0
 = 18 + 14 + 02 + 11 = 1310.

Chapter 5 Arithmetic Operations

Page 128 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

To motivate our discussion of binary addition, let us first look at decimal addition. Consider

the sum 15 + 17 = 32. In the standard form in which most of us learned addition, the problem

would be stated as follows:
 15

 + 17

 32

First, note that 5 + 7 = 12. In order to speak of binary addition, we must revert to a more basic

way to describe 5 + 7; we say that the sum is 2 with a carry-out of 1. Consider the sum 1 + 1,

which is known to be 2. However, the correct answer to our simple problem is 32, not 22,

because in computing the sum 1 + 1 we must consider the carry-in digit, here a 1. With that in

mind, we show two addition tables – for a half-adder and a full-adder. The half-adder table is

simpler as it does not involve a carry-in. The following table considers the sum and carry from

A + B.

Half-Adder A + B

 A B Sum Carry

 0 0 0 0 Note the last row where we claim that 1 + 1 yields a

 0 1 1 0 sum of zero and a carry of 1. This is similar to the

 1 0 1 0 statement in decimal arithmetic that 5 + 5 yields a

 1 1 0 1 sum of 0 and carry of 1 when 5 + 5 = 10.

Remember that when the sum of two numbers equals or exceeds the value of the base of the

numbering system (here 2) that we decrease the sum by the value of the base and generate a

carry. Here the base of the number system is 2 (decimal), which is 1 + 1, and the sum is 0.

Say “One plus one equals two plus zero: 1 + 1 = 10”.

For us the half-adder is only a step in the understanding of a full-adder, which implements

binary addition when a carry-in is allowed. We now view the table for the sum A + B, with a

carry-in denoted by C. One can consider this A + B + C, if that helps.

Full-Adder: A + B with Carry

 A B C Sum Carry

 0 0 0 0 0

 0 0 1 1 0

 0 1 0 1 0

 0 1 1 0 1

 1 0 0 1 0

 1 0 1 0 1

 1 1 0 0 1

 1 1 1 1 1

As an example, we shall consider a number of examples of addition of four-bit binary

numbers. The problem will first be stated in decimal, then converted to binary, and then

done. The last problem is introduced for the express purpose of pointing out an error.

We shall see in a minute that four-bit binary numbers can represent decimal numbers in the

range 0 to 15 inclusive. Here are the problems, first in decimal and then in binary.

 1) 6 + 1 0110 + 0001

 2) 11 + 1 1011 + 0001

 3) 13 + 5 1101 + 0101

Chapter 5 Arithmetic Operations

Page 129 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

 0110 1011 1101 In the first sum, we add 1 to an even number. This

 0001 0001 0101 is quite easy to do. Just change the last 0 to a 1.

 0111 1100 0010 Otherwise, we may need to watch the carry bits.

In the second sum, let us proceed from right to left. 1 + 1 = 0 with carry = 1. The second

column has 1 + 0 with carry-in of 1 = 0 with carry-out = 1. The third column has 0 + 0 with

a carry-in of 1 = 1 with carry-out = 0. The fourth column is 1 + 0 = 1.

Analysis of the third sum shows that it is correct bit-wise but seems to be indicating that

13 + 5 = 2. This is an example of “busted arithmetic”, more properly called overflow.

A give number of bits can represent integers only in a given range; here 13 + 5 is outside

the range 0 to 15 inclusive that is proper for four-bit numbers.

Back to the Half–Adder

The half–adder may be seen as adding the units column in integer addition; there is no

carry–in. As we shall see later, it is often convenient to replace a half–adder with a full–adder

in which the carry–in is set to 0. The two are equivalent. Here again is the truth table.

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

What the last row says is simple. In decimal, 1 + 1 is 2. But 2 is the basis of the binary system,

so we have to say that 1 + 1 = 12
1
 + 02

0
; in other words, the sum is 0 and the carry–out is 1.

This is similar to what might be said in decimal arithmetic; 5 + 5 is really 10, but we might say

that the sum is 0 and the carry–out is 1,

The simplest circuit implementation of a half–adder involves an AND gate and a XOR gate.

An equivalent implementation is shown in order to facilitate discussion of the full–adder.

Chapter 5 Arithmetic Operations

Page 130 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Back to the Full–Adder

The full–adder might be seen as equivalent to the tens or hundreds column in standard addition;

there must be provision for a carry–in from the column to the right. Here again is the truth table

for the full adder with an additional column giving comments.

A B Cin Sum Cout Result = 2  Cout + 1  Sum

0 0 0 0 0 0 = 2  0 + 1  0

0 0 1 1 0 1 = 2  0 + 1  1

0 1 0 1 0 1 = 2  0 + 1  1

0 1 1 0 1 2 = 2  1 + 1  0

1 0 0 1 0 1 = 2  0 + 1  1

1 0 1 0 1 2 = 2  1 + 1  0

1 1 0 0 1 2 = 2  1 + 1  0

1 1 1 1 1 3 = 2  1 + 1  1

A bit of Boolean algebra will show that the Sum and Carry (out) can be represented as:

A bit more Boolean algebra will result in the following simplification of the second expression.

Here is the circuit implementing these two expressions.

This is the standard implementation of a full–adder. There is another worth mention.

Chapter 5 Arithmetic Operations

Page 131 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

This second implementation of a full–adder appears in the text by Rob Williams. It uses two

half–adders and an OR gate. Here is the circuit.

First, we must show that the circuit does indeed function as a full–adder. This is done

using a truth table. Note a column for each intermediate result. This is a full–adder.

A B Cin C1 S1 C2 Carry Sum

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 1 0 0 1 0 0 1

0 1 1 0 1 1 1 0

1 0 0 0 1 0 0 1

1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 0

1 1 1 1 0 0 1 1

A simple way to confirm that this is the truth table of a full–adder is to count the number of

1’s in the triple (A, B, Cin). If the count is odd (1 or 3) the sum is 1, otherwise the sum is 0.

If the count is 2 or more, the carry is 1, otherwise the carry is 0.

The Complete Full–Adder

We have just considered a full adder for two one–bit numbers with a carry–in (from somewhere).

We now extend the idea to multiple bit binary numbers. Typical examples include 8, 16, 32, and

64 bit numbers. Our example will focus on four bit numbers. We add two four bit numbers

(A3, A2, A1, A0) and (B3, B2, B1, B0).

We begin with the block diagram of a full–adder. Following standard practice in the study of

computer organization and architecture, once the inner details of a circuit have been mastered,

we no longer show them, but show the circuit as a single block.

We now extend this design to a four–bit parallel adder. This design is the logical basis for the

adder in a modern ALU. It is too slow for actual use.

Chapter 5 Arithmetic Operations

Page 132 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Recall that the “units bit” addition with A0 and B0 could have been implemented as a

half–adder. For reasons that will appear shortly, this was implemented as a full–adder

with the carry input tied to logic 0, here 0 volts (represented by the ground symbol).

This is called a “ripple carry” adder in that the carry bit ripples from right to left. Each

full–adder has a time delay before the carry–out bit is valid. Consider FA1, the one with inputs

A1, B1, and C1. The input C1 does not become valid until some time after the inputs to FA0,

A0 and B0 become valid. Another delay ensues before the outputs S1 and C1 are valid.

For details on the timing of a full–adder and a ripple carry adder, please refer to this author’s

textbook on Computer Architecture.

Binary Subtraction

We shall use a full–adder to perform binary subtraction by following the standard rule from

arithmetic: A – B = A + (–B). We just need to negate one of the inputs to the full–adder and

we have a subtractor. How do we do that?

All modern Arithmetic Logic Units implement integer arithmetic using the two’s–complement

form. Thus we need to build a two’s–complement negator. As an aside, we note that it is

possible to build an adder/subtractor for other formats, but that these designs are quite complex.

It is the simplicity of the standard two’s–complement unit that lead to its being the standard.

Remember the rule for negating an integer in two’s–complement arithmetic: take the

one’s–complement and add one. As an expression, this is as follows:

But recall that taking the one’s–complement of a binary number is exactly the same as taking

the logical NOT of each of its bits. Here is the case for the 4–bit number B3B2B1B0. We begin

with a circuit to produce the one’s–complement of the number.

In order to get the negative of the number, all we need to do is add 1 to it. Of the several ways

this could be done, the best way is to set the carry–in of the units full–adder to 1.

Consider the following positive 4–bit number. B = 0100

Take the one’s complement to get this number 1011

Add one to the number to get the true negative 1100

If the left input to each FA had been the bit values of A, we would have (A – B). Now we

try to convert this into a unit that will add or subtract.

Chapter 5 Arithmetic Operations

Page 133 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

In order to build the unit, we need a circuit element that can generate either the plain version

of its input or the one’s–complement of its input. But we have exactly that in the XOR gate.

Here is the truth table for the XOR circuit, with two inputs: B and S (select).

B S B  S

0 0 0

1 0 1

0 1 1

1 1 0

Given the above, here is the full circuit for the 4–bit adder/subtractor.

Consider the case when A#/S = 0. This indicates that addition is to take place. This signal

is fed into the exclusive OR gates feeding the right inputs of the adders, passing the plain form

of the B input. This feeds the units carry–in; the result is A + B + 0, or just A + B.

Now consider the case when A#/S = 1. This indicates that subtraction is to take place. This

is fed into the exclusive OR gates, passing the one’s complement of B into the right inputs of

the adder. The signal feeds the units carry–in, thus the result we get is

.

Consider the following example of addition and subtraction. In decimal, the numbers are

A = 5 and B = 2. It should be obvious that A + B = 7 and A – B = 3.

Let’s do the arithmetic in 4–bit binary. The addition is straightforward.

A = 0101

B = 0010

Sum = 0111

In order to evaluate A – B, it is necessary first to take the two’s–complement of B.

B = 0010

1’s complement = 1101

Add 1 to get = 1110

Here then is the addition to get A – B

A 0101 In the 4’s column, 1 + 1 with carry–in = 0 is 0, with carry–out = 1.

–B 1110 In the 8’s column, 1 + 0 with carry–in = 1 is 0, with carry–out = 1

 0011 The carry out from the 8’s column is discarded.

Chapter 5 Arithmetic Operations

Page 134 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Here is the circuit above when addition is called for; A#/S = 0. Note that the selector input

to the exclusive OR function is a 0, so that the B values are passed unchanged.

Here is the circuit above when subtraction is called for; A#/S = 1. The selector input to

the exclusive OR function is a 1, so that the value passed is the one’s–complement of B

As indicated above, these circuits are correct logical models of an adder/subtractor, but

they are not actually used. Consider a 32–bit version of this ripple carry adder. It would

have 32 full adders, connected in the same manner as above.

Such a ripple carry adder is much too slow for commercial use. Each full–adder must wait on

the completion of the carry–out calculations of all the full–adders to its right before it can

begin calculating the sum and carry–out.

The full–adder for the sign bit (FA 31) must wait for all 31 full–adders (FA 0 to FA 30) to

its right to complete their calculations before starting. That is a long wait.

Chapter 5 Arithmetic Operations

Page 135 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

The Shifter

Bits in an addressable unit, such as a byte or word, are considered to have position. A shifter

shifts each bit in the unit by a fixed amount, with variations depending on type.

In our examples of shifting, we shall consider 8–bit bytes. The term “byte”, coined by IBM, and

long thought to be trademarked by them, was chosen for the unit of storage appropriate to store

the binary coding for a character. At the time, the complete IBM character set required seven

bits to encode; this was extended to 8 bits out of habit.

Each byte, having eight bits, has its bits numbered from 0 through 7. Here is the bit numbering

scheme used by all manufacturers except IBM.

Bit # 7 6 5 4 3 2 1 0

Value 1 0 0 1 0 1 1 0

Bit 7 is the most significant bit; bit 0 is the least significant bit. In hexadecimal notation, this

would be represented as 96. The unsigned decimal value is 916 + 6 = 150.

Here are some examples of simple logical shifts, in which a 0 is shifted into the vacated “spot”.

The original value in binary: 1001 0110

The original value right shifted one place: 0100 1011

The original value right shifted two places 0010 0101

The original value in binary: 1001 0110

The original value left shifted one place: 0010 1100

The original value left shifted two places 0101 1000

There is some interesting arithmetic for unsigned integers hidden in these shift operators. It is

more easily noticed for smaller numbers. Decimal 11 in binary is 0000 1011.

The original value in binary: 0000 1011, decimal value = 11

The original value shifted right one place 0000 0101, decimal value = 5

The original value shifted right two places 0000 0010, decimal value = 2.

The original value in binary: 0000 1011, decimal value = 11

The original value shifted left one place 0001 0110, decimal value = 22

The original value shifted left two places 0010 1100, decimal value = 44.

In other words, for unsigned binary integers, a single left shift is equivalent to multiplication by

two, and a single right shift is equivalent to division by two, with the remainder discarded. For

signed binary integers, the situation is only slightly more complicated. The shift operations are

much more time efficient than either integer multiplication or integer division. For this reason,

one often sees shift operations substituted for multiplications and divisions by powers of two.

The hardware for the simplest shift units shifts only one place at a time. To shift left by three

places requires three calls to the shift operator. There are two types of shifters that are more

efficient and hence more complex. The logarithmic shifter has a number of stages that is the

logarithm (base 2) of the number of bits; a shifter for 16 bits would have four stages (16 = 2
4
),

and a shifter for 32 bits would have five stages (32 = 2
5
).

The most efficient shifter is the barrel shifter; it has one stage only.

Chapter 5 Arithmetic Operations

Page 136 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

In general, there are two types of shifts – left shifts and right shifts. These names correspond

roughly to the way in which we would illustrate these shifts by drawing diagrams. Each of the

two shift types comes in three varieties: logical, circular, and arithmetic.

The basic definition of each shift type is in terms of shifting by one place. We should note that

multiple shifts are easily defined; shifting by N places must be equivalent to N single shifts. For

convenience in designing a barrel shifter, we normally think in terms of shifting by N = a power

of two, so that a shift by 13 places is a shift by 1 place, followed by a shift by 4 places, and then

a shift by 8 places, as 13 = 1 + 4 + 8.

We shall illustrate the shift types by considering them as applied to an eight-bit shift register,

with contents labeled as R7 R6 R5 R4 R3 R2 R1 R0. We use 1001 0110 as an example.

Logical Shifts

Logical shifts just move bits in the indicated direction, padding out with 0’s. Shifts can be by

any count, but shifts by more than the size of the register leave it all 0’s.

For left shifting an N-bit register by 1 place

 RJ+1  RJ for 0  J < (N – 1)

 R0  0, R(N – 1) is lost

As an example of a shift of an 8-bit register

For a single left shift 1001 0110 becomes 0010 1100

Left shift by 2 places: 1001 0110 becomes 0101 1000

For right shifts by 1 place

 RJ+1  RJ for 0  J < (N – 1)

 R(N – 1)  0, R0 is lost

As an example of a 8-bit register shift

For a single right shift 1001 0110 becomes 0100 1011

Right shift by 2 places: 1001 0110 becomes 0010 0101

Note that shifting either left or right by eight or more places produces the result 0000 0000,

so that the shift count will normally be in the range 0 through 7 inclusive.

The general rule for an N-bit register is that the shift count is usually in the range from

0 to (N – 1) inclusive, a modulo–N non–negative number.

Chapter 5 Arithmetic Operations

Page 137 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Arithmetic Shifts

Arithmetic shifts are identical to logical shifts except that the sign bits are preserved. Arithmetic

shifting is normally defined only for right shifts.

For right shifts by 1 place

 RJ+1  RJ for 0  J < (N – 1)

 R(N – 1)  R(N – 1), R0 is lost

As an example of an 8-bit register 1001 0110 becomes 1100 1011

The purpose of arithmetic shifts is to cause the right shift to become equivalent to division by

two on two’s-complement integers. We use 8-bit two’s-complement arithmetic to illustrate the

correspondence of shifting to multiplication and division. The range of this representation is

from – 128 to 127 inclusive.

Consider the number 52, represented as 0011 0100 in binary. Taking the two’s-complement

of this binary pattern, we find that the representation of – 52 is 1100 1100.

We first apply successive arithmetic right shifts to both 52 and – 52.

We now apply successive logical left shifts to the same two numbers.

Note that this corresponds to multiplication by two whenever the sign bit stays the same.

Chapter 5 Arithmetic Operations

Page 138 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Circular Shifts

Circular shifts are identical to logical shifts except that bits “shifted off” one end are put at the

other end, thus making the shift appear as a circle.

For left shifts by 1 place

 RJ+1  RJ for 0  J < (N – 1) R0

 R(N – 1), nothing is lost

As an example for an 8-bit shift

 1001 0110 becomes 0010 1101

For right shifts by 1 place

 RJ+1  RJ for 0  J < (N – 1)

 R(N – 1)  R0

As an example of an 8-bit shift

 1001 0110 becomes 0100 1011

The Barrel Shifter

To give a flavor of a barrel shifter, I design a single bit circular shifter for a 4–bit number.

We must begin with a table giving the output of the shifter in terms of the input R3R2R1R0.

 No shift Left Circular Right Circular

Y3 R3 R2 R0

Y2 R2 R1 R3

Y1 R1 R0 R2

Y0 R0 R3 R1

Here is the circuit. It is implemented with tri–state buffers. When there is no shift, the red line

is asserted. The green line is asserted for a single left shift and the blue line for a right shift.

Chapter 5 Arithmetic Operations

Page 139 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

As complex as the above circuit appears to be, it can grow much messier for reasonably sized

shift units. The number of tri–state buffers scales quadratically as the number of bits in the

ALU; more specifically a shifter for an N–bit ALU would require 3N
2
 tri–states. That would

be 768 tri–states for a 16–bit ALU and 3,072 tri–states for a 32–bit ALU.

In order to clarify the above circuit, we present the state of the circuit for each of the three shift

options: no shift, left shift by 1, and right shift by 1. Note that for each diagram, each input line

is connected to precisely one output line.

First the no shift option. The lines in red show the connections. Other wires are not connected.

Now the left shift option. The lines in green show the connections.

And now the right shift option. The lines in blue show the connections.

Chapter 5 Arithmetic Operations

Page 140 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Multiplication and Division

We note immediately that multiplication of two N–bit integers yields a product with 2N bits. For

that reason, we shall discuss N–bit multiplication with a 2N–bit product, and N–bit division with

a 2N–bit dividend, an N–bit divisor, an N–bit quotient, and N–bit remainder. This “doubling of

the digits” is seen in decimal as well as binary multiplication.

Decimal: 9,999  9,999 = 99,980,001

Binary 1111  1111 = 1110 0001 (15  15 = 225)

The most common implementations of multipliers call for two 16–bit numbers with a 32–bit

product, and two 32–bit numbers with a 64–bit product.

We begin with a consideration of multiplication for unsigned positive integers. At one level, this

is quite simple, as the “times table” is very small. Here it is.

A B AB

0 0 0

0 1 0

1 0 0

1 1 1

One might note that this is exactly the truth table for the logical AND function, which is denoted

by the same symbol as multiplication. This might suggest the use of the logical AND gate in a

multiplier; the true circuits are even simpler. Consider a labeled example.

 1011 the multiplicand, with decimal value 11

 1001 the multiplier, with decimal value 9
 1011

 0000

 0000 the four partial products
 1011___

 1100011 the product, with decimal value 99

Note that there are four partial products, one for each bit in the multiplier. Each partial product

is the length of the multiplicand, and is either a copy of the multiplicand or all 0. The standard

assumption is that the multiplicand and multiplier have equal length, each having the length of

the standard integer in the architecture. All commercial designs allow different lengths for

integer representations (8–bit, 16–bit, 32–bit, etc.), providing a number of distinct multiplication

operations (8–bit by 8–bit, 16–bit by–16 bit).

Modern multiplication algorithms are based on shifting and adding. This allows one to use the

minimum number of registers required to hold the operands and the results. The standard

approach calls for setting up a result of 2N bits, initialized to zero. The multiplier is then

examined right to left. If the bit is 1, the multiplicand is added to the result. If not, nothing

is added.

The next step is to shift the multiplicand left by one, and consider the next bit in the

multiplier. We illustrate this algorithm with two 4–bit numbers and an 8–bit product.

Chapter 5 Arithmetic Operations

Page 141 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

For this example, label the multiplier bits as M3M2M1M0; M3 = 0, M2 = 1, M1 = 1, M0 = 1.

For 4–bit multiplication, we initialize the register set used for the product to eight 0’s.

At the start, the situation is as follows. Multiplicand 1011

 Results 00000000

M0 = 1, add multiplicand to results Multiplicand 1011

 Results 00001011

Shift the results register set right Multiplicand 1011

 Results 00001011

M1 = 1, add multiplicand to results Multiplicand 1011

 Results 00100001

Shift the results register set right Multiplicand 1011

 Results 00100001

M2 = 1, add multiplicand to results Multiplicand 1011

 Results 01001101

Shift the results register set right Multiplicand 1011

 Results 01001101

M3 = 0, do not add. Multiplicand 1011

 Results 01001101

Division

Standard division follows the same strategy as classical long division, except that it cannot

use any human–style inspection to compare two numbers. The only way for an ALU to

compare two numbers is to perform a subtraction and test the sign of the result. Here we shall

describe a variant of division called “restoring division”, by which we mean that a subtraction

will be performed and, if the result is negative, the original value will be restored by an addition.

Consider the manual algorithm as applied to unsigned binary division. We shall apply long

division to apply the divisor 1011 (decimal 11) to the dividend 10010011 (decimal 147). In the

manual algorithm, we place the divisor immediately below the dividend, test if it is too large,

and proceed accordingly.

 1011)10010011

 1011

At this point, a human would note that the divisor is larger than the 4–bit part of the dividend

immediately above it and move on. The ALU will perform the subtraction, get 1110 (or

minus 2), then add back the 1011 to get 1001, and only then move on.

Chapter 5 Arithmetic Operations

Page 142 CPSC 2105 Revised July 27, 2011

 Copyright © by Edward L. Bosworth, Ph.D. All rights reserved.

Now the five–bit part of the dividend, 10010, is compared to the four–bit divisor, 1011, and

subtracted from it. A “1” is written directly above the units column for the divisor.

 _00001___

 1011)10010011

 1011

 0111

Next a 0 is “brought down”, the divisor shifted once more to the right, and compared. The

divisor is smaller than the partial remainder. The subtraction is performed.
 _000011__

 1011)10010011

 1011

 01110

 1011

 0011

We now finish the division using the standard manual practice.
 _00001101

 1011)10010011

 1011

 01110

 1011

 001111

 1011

 100

