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Chapter 7A – Overview of Instruction Set Architecture 

This is the first of three chapters in this textbook that correspond to Chapter 7, The Intel Pentium  

CPU, in the official text for this course, Computer Systems Architecture by Rob Williams.  In  

this part of the three–part chapter, we consider a number of design issues related to the ISA  

(Instruction Set Architecture) of a modern computer. 

The ISA (Instruction Set Architecture) of a modern computer is the interface it presents to the  

assembly language programmer.  This includes all of the general–purpose register set, some of  

the special purpose register set, the status flags, all of the assembly language instructions, and  

possibly some of the calls to the Operating System.  There is some theoretical ambiguity as to  

whether the System Calls of the Operating System should be included in the ISA, as they  

properly do not belong to the hardware, and can change with the choice of Operating System.   

This ambiguity is of little practical consequence, and need not concern us. 

The design of the ISA of a particular computer is the result of many tradeoffs.  Early in the  

history of computation, the design of the ISA was driven by hardware costs.  Commercial  

computers today have the ISA design driven more by two factors: the desire for performance,  

and the need for backward compatibility with earlier models of the CPU line.  With high–quality  

commercial SDRAM selling for less than $100 per gigabyte, memory costs no longer matter. 

Basics of ISA Design 

Here we look at a few design decisions for instruction sets of the computer.  Some basic issues  

to be considered are: 

 1. The basic data types to be handled. 

 2. Basic instruction set design. 

 3. Fixed–length vs. variable–length instructions. 

 4. Stack machines, accumulator machines, and multi–register machines. 

 5. Modern Design Principles and the Reduced Instruction Set Computer. 

The Basic Data Types 

All known computer support some sort of integer data type.  Almost all known computers  

support a character data type, with the exception of some of the “number crunchers” by  

Control Data Corporation, such as the CDC–6600.  Most computers support floating point  

data types, normally the two IEEE–754 standard types.  IBM mainframe computers in the  

z/Series and the z/Enterprise series support packed decimal arithmetic as well. 

The data types supported are chosen with particular applications in mind.  The CDC–6600 and  

other computers designed by Seymour Cray were designed for scientific computations.  The only  

two data types required for this were 48–bit integers and 60–bit floating point.  Your author  

remembers having to compute integer values for character combinations to be sent as labels to  

a flat bed plotter. 
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On the other hand, the IBM System/360 was designed as a general–purpose computer, with  

emphasis on commercial calculations.  Among the data types supported were: 

 Signed integers, both 16–bit and 32–bit, 

 Character data, using the IBM EBCDIC scheme,  

 Floating point numbers: single–precision, double–precision, and extended precision, and  

 Packed decimal data types for commercial computation. 

Some data types are mistakes and some are a bit strange.  The early PDP–11 supported a 16–bit  

floating point standard that provided so little precision as to be useless.  It was quickly dropped.   

Some of the LISP machines (designed to execute the LISP language) supported bignums, which  

are integers of unbounded size.  A typical computation using bignums would be to compute  

the value of the mathematical constant  to 100,000 decimal places. 

The 8–bit byte was created by IBM for use on the System/360.  It was designed to hold an  

EBCDIC character.  At the time, only seven bits were required for the character set, but IBM  

wisely chose to extend the encodings to eight bits.  For some time later, it was assumed that  

the term “byte” was trademarked by IBM, so the early Internet designers referred to a grouping  

of eight bits as an octet.  The term has stuck in the network world; others call it a byte. 

There are a number of possible data types that generally are not supported by any computer.   

One silly example is the Roman Number system.  This is nothing more than a different print  

representation of positive integers; the decimal number 64 would be printed as LXIIII.  In  

other words, this is not a candidate for a data type. 

Complex numbers, of the form x + iy, where i is the square root of –1, are candidates for a  

data type.  The number would be stored as a pair of real numbers (x, y), and be processed by  

the CPU according to the rules of complex arithmetic; e.g., (x1, y1) + (x2, y2) = (x1 +x2, y1 +y2).   

The uniform choice has been to implement the real number arithmetic in a special floating point  

unit, but to implement the complex arithmetic itself in software. 

Fixed–length vs. Variable–Length Instructions 

A stored program computer executes assembly language instructions that have been converted to  

binary machine language.  In all modern computers, the length of each instruction is a multiple  

of 8 bits, so that the complete instruction occupies an integral number of bytes. 

Some modern computers are designed to have a fixed instruction length.  At the moment, the  

most common length is 32 bits or four bytes.  This allows a simpler control unit for the CPU,  

but does have some penalties in memory usage.  Computer organizations devised in the 1960’s  

and 1970’s tend to have variable length instructions and slightly more complex control units.   

The use of variable length instructions makes better use of computer memory, which before  

about 1980 was a costly asset.  Here are some cost data for one megabyte of memory.  In 1970  

one megabyte would cost about $730,000.  In 1979 one megabyte cost about $6,700.  In 1990, 

the cost was $46.00.  In 2000, the cost per megabyte was seventy cents, assuming that one could  

buy such a small memory.   

Perhaps the most common example of an organization is that of the Pentium series.  This has to  

do with the early history of the Intel IA–32 line and the later desire to maintain compatibility  

with the early models.  The origins of the design come from the 8–bit Intel 8080, designed in  

the early 1970’s and released in April 1974.  The next subchapter of this textbook will cover  

the evolution of the Intel computer line. 
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In order to illustrate the memory usage problems associated with fixed length instructions, we  

shall first examine two designs, each with fixed–length 32–bit instructions.  These are the  

Boz–7 (a hypothetical design by the author of this textbook) and the MIPS, a real device in  

use for many game controllers and other hardware. 

The Boz–7 has one format that calls for 32–bit machine language instructions for all assembly  

language statements.  The standard calls for a five–bit opcode (used to identify the operation).   

Bit 31 30 29 28 27 26 25 – 0 

Use 5–bit opcode Address Modifier Use depends on the opcode 

Here are a few instructions, with comments. 

The halt instruction has opcode 00000, or decimal 0.  It stops the computer. 

Bit 31 30 29 28 27 26 25 – 0 

Use 00000 Not used Not used 

Note that 27 of the 32 bits in this binary instruction are not used.  Given the reasonable  

requirement that the instruction length be a multiple of 8, it would be very easy to package this  

as a single byte, if the instruction set supported variable length instructions; a 75% saving. 

The standard arithmetic instructions, such as ADD and SUB have this format.  This figure shows  

a subtract instruction SUB R5, R6, R4, setting register R5 = R6 – R4. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0 
10110 0 101 110 100 Not used 

Here, only 17 of the 32 bits are not used.  Instructions of this type could easily be packaged  

in two bytes, leading to a 50% saving in memory usage. 

Only the two memory access instructions (LDR – load register from memory, STR – store  

register into memory), the branch instruction, and the subroutine call instruction use the full  

32 bits allocated for the instruction format.  The Boz–7 is designed as a didactic computer,  

focusing on the teaching of basic concepts; it has never been built and never will be. 

The MIPS (Microprocessor without Interlocked Pipeline Stages) is a real commercial computer  

with fixed–length binary instructions of 32 bits.  It was developed in the early 1980’s by a team  

that included one of the authors (John L. Hennessy) of the reference [R007] used to describe it.   

The first product, the R2000 microprocessor, was shipped in 1986. 

The MIPS core instruction set has about 60 instructions in three basic formats.  All instructions  

are 32 bits long, with the most significant six bits representing the opcode.  The MIPS design  

employs an interesting trick; many arithmetic operations have the same opcode, with the  

function selector, funct, selecting the function.  Addition has opcode = 0 and funct = 32. 

Subtraction has opcode = 0 and funct = 34.  This makes better use of memory. 
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The IBM System/360  

The IBM System/360 comprises a family of similar computers, designed in the early 1960’s,  

announced on April 7, 1964, and first sold in mid 1965.  The smallest model, the S/360–20  

had only 4 KB (4,096 bytes) of main memory.  Many of the larger models were shipped with  

only 128 KB to 512 KB of main memory. 

For this reason, the S/360 instruction set provides for instruction lengths of 2 bytes, 4 bytes, and  

6 bytes.  This resulted in six instruction classes, each with an encoding scheme that allowed the  

maximum amount of information to be specified in a small number of bytes.  All instructions  

in the ISA have an 8–bit (one byte) opcode. 

These formats are classified by length in bytes.  The five common instruction classes of use  

to the general user are listed below. 

 Format Length Use  

 Name in bytes 

 RR 2 Register to register transfers. 

 RS 4 Register to storage and register from storage 

 RX 4 Register to indexed storage and register from indexed storage 

 SI 4 Storage immediate 

 SS 6 Storage–to–Storage.  These have two variants. 

The AR instruction is typical of the RR format.  The S/360 had 16 general–purpose registers,  

requiring 4 bits (one hexadecimal digit) to identify.  The machine language translation of this  

instruction requires 16 bits (two bytes): 8 bits for the opcode and 4 bits for each register.   

The opcode for AR is 1A.  Here are some examples of machine code. 

 AR 6,8 1A 68  Adds the contents of register 8 to register 6. 

 AR 10,11 1A AB  Adds the contents of register 11 to register 10. 

A reasonable estimate of the average length of a machine instruction in a typical job mix would  

be a bit more than 4 bytes.  This is a 33% saving over the requirement for 6 bytes per machine  

language instruction, were uniform length instructions used. 

As the IBM mainframe series evolved, the company maintained strict binary program  

compatibility.  New series started with the System/370 in the 1970’s, continued through to  

the z/Series in the 2000’s and now the z/Enterprise models.  When your author teaches IBM  

assembly language, he assigns programs in System/370 assembly language to be run on an  

IBM z/9, announced on July 25, 2005 and first shipped on September 16, 2005.  These always  

run without any difficulty, once the students get the coding correct. 

The Intel Pentium 

The Pentium instruction set architecture is considerably more complex than even the IBM  

System/360.  This design may be said to support variable length machine language instructions  

with a vengeance; the instruction length can vary from 1 through 17 (possibly 15) bytes.   

We shall discuss the details of the Pentium ISA in chapter 7C, after first discussing the evolution  

of the IA–32 architecture from the early 8–bit designs, through the 16–bit designs, and officially  

starting with the Intel 80386, the first 32–bit design.  That discussion will be in chapter 7B. 
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Instruction Types 

There are basic instruction types that are commonly supported. 

 1. Data Movement  (Better called “Data Copy”)  These copy data from a source to a  

  destination.  Suppose that X and Y are 32–bit real numbers at fixed memory locations.   

  The instruction Y = X makes a copy of the four bytes associated with X and places them  

  in the four bytes at the address for Y.  The value at the address for X is not changed;  

  nothing is “moved out”.   

 2. Arithmetic The standard arithmetic operators are usually supported.  It might  

  come as a surprise that a modern CPU can support only the four standard arithmetic  

  operations:  addition, subtraction, multiplication, and division.   Some early designs did  

  not support either multiplication or division.  If division is supported, one usually also has  

  the mod and rem functions.  On business–oriented machines, decimal arithmetic is  

  always supported, being immune to the round–off problems of floating point arithmetic. 

  Graphics–oriented machines usually support saturation arithmetic, in which a sum that  

  exceeds the maximum allowable is set to the maximum.  For example, unsigned 8–bit  

  arithmetic can support integers only in the range 0 through 255, inclusive.  In standard  

  arithmetic, the sum 200 + 200 could not be represented; it would cause an overflow.   

  In saturation arithmetic, we set 200 + 200 arbitrarily to 255, the maximum value. 

  Real number arithmetic is often not handled directly in the CPU, but by a coprocessor  

  attached to it.  Early on (Intel 80486 / 80487) this was a cost consideration.   

  RISC machines follow this approach in order to keep the CPU simple. 

 3. Boolean Logic There are two standard classes of Boolean type instructions.  The 

  more common involves the standard Boolean functions AND, OR, NOT, and XOR.   

  These are described in chapter 4 of this textbook.   

 4. Bit Manipulation These use instructions that appear to be Boolean, but in fact  

  operate differently.  This is a distinction lost on many students, perhaps because it is  

  rarely important.  Here are some examples of bitwise operations.  These operations  

  are often used to set Boolean bit flags in device control registers. 
        1001 0110      1001 0110       1001 0110 

    AND 1100 0011   OR 1100 0011   XOR 1100 0011 

        1000 0010      1101 0111       0101 0101 

 5. Input / Output The computer must communicate with external devices, including  

  permanent storage, printers and keyboards, process control devices (through dedicated  

  I/O registers), etc.  All commercial machines have “addressable” I/O devices; i.e., the  

  CPU issues a device identifier that appears to be an address to select the device.  From  

  the CPU viewpoint, each I/O device is nothing more than a set of registers (control,  

  status, and data) and some timing constraints. 

 6. Transfer of Control These alter the normal sequential execution of code.  At the  

  primitive machine language level, all we have is unconditional jumps, conditional jumps,  

  and subroutine invocations.  Higher level languages elaborate these features with  

  constructs such as conditional statements, counted loops, and conditional loops. 
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The Basic Instruction Set Design 

At first, this seems to be a strange question.  Don’t all computers do the same thing?  The answer  

is that the instructions chosen depend on what the computer is to do.  For example, a computer  

designed to be a router in the global Internet will function almost exclusively as a data router,  

moving bytes from one data buffer to another.  It has little use for floating–point arithmetic.  If  

the addition of floating–point to the CPU will slow it down, that feature will be omitted. 

Most students relate to computers on a simple, but important, basis: “Here is the computer, here  

is what it does, just use it”.  It is worth note that some person or group of persons had to design  

that computer, which means designing the CPU, which means designing the ISA (Instruction Set  

Architecture).  Most new designs begin with a list of desired features and move through a series  

of compromises focusing on what can be delivered at reasonable price and performance.  We use  

the ENIAC as an obvious example.  When designed in the early 1940’s it had no memory as we  

would recognize it.  The reason that the designers chose not to have even a modestly sized  

memory was cost.  A 128 KB memory would have cost millions of dollars.  Moreover, it would  

have used about one million vacuum tubes, which were in short supply due to the war.  One of  

the ENIAC developers reported that the team used whatever tubes it could find in the design of  

the arithmetic logic unit for the machine.  Here are some of the design issues involved in the  

creation of a new CPU. 

The number and names of the registers. 

A register is considered to be a short–term memory device associated with the CPU.  In this, it  

differs from the memory component, which is considered as being separate from the CPU.  After  

we discuss the Pentium ISA and then discuss the multi–level cache memory associated with the  

Pentium chips, we shall see that the real difference between a register and a primary memory  

location is the use made of it by the assembly language.  A modern Pentium design is likely to  

have a few megabytes of cache memory on the CPU chip; this blurs the physical distinction  

between registers and memory. 

Early computer designs favored very few registers, primarily because the technology used to  

create register memory was both expensive and prone to failure.  In fact, some early designs  

(such as the PDP–1 and IBM S/360–20) treated registers as logical concepts, actually using  

dedicated memory locations to serve as registers. 

The earliest machines to have registers were single accumulator machines, with one general  

purpose register used to accumulate the results.  This design is still seen in the many calculators  

that use a single display line to show the results; this display reflects the contents of a single  

register that might be called the accumulator.  For an introduction to this type of device, the  

reader is invited to examine the MS–Windows Calculator. 

The next step in the evolution was the two–register machine.  One early example of this design  

was the PDP–9, first manufactured in 1968.  These two registers, called the AC (Accumulator)  

and the MQ (Multiplier–Quotient), used as an extension of the accumulator to more easily  

handle integer multiplication and division. 

Beginning in the mid 1960’s, most computers were designed with multiple general–purpose  

registers.  The IBM S/360 series is typical of the time; this design provided sixteen registers  

labeled 0 through 15.  As noted above, these registers were a logical construct.  In the cheaper  

models the registers were dedicated memory locations, in others a separate memory.  Only in  

the faster, and more expensive, units were the registers implemented with flip–flops. 
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The PDP–11, designed in the late 1960’s, provided eight registers, labeled 0 through 7.  The  

VAX–11 series, designed in the late 1970’s provided 16 registers, labeled 0 through 15.  The  

MIPS, designed in the early 1980’s, provided 32 registers, 0 through 31.  Other designs, such as  

the SPARC, offered even more registers.  Today, 32 general–purpose registers are common. 

The one strange design is part of a series that began with the Intel 8080, released in 1974.  This  

evolved gradually into the Pentium series.  The original 8080 had seven 8–bit general purpose  

registers (A, B, C, D, E, H, and L) as well as two special purpose registers (W and Z) to hold  

temporary results.  The A register was the accumulator and the other six often had dedicated  

uses that occasionally prevented their use for general computations.  These six could be treated  

as three pairs (BC, DE, and HL) in order to process 16–bit results. 

The evolution of this register set into the modern Pentium set will be covered in the next  

sub–chapter.  Here, we just note that the Intel 8080 set the roadmap for all others in the series. 

Floating point 

Some early computer designs provided hardware support for floating–point arithmetic, and some  

did not, mostly due to the complexity and cost of the FPU (Floating–Point Unit).  All computers  

in the IBM mainframe series, beginning with the System/360 provided hardware support for  

floating–point as an integral part of the CPU.  The PDP–9, from about the same time, did not  

offer hardware support, but emulated floating–point arithmetic in software.  Your author has  

written a floating–point emulator for the PDP–9 that used only integer arithmetic instructions;  

to say that it was very slow is to be quite generous. 

Again, the decision on floating–point arithmetic was based on the expected use.  Those designs  

dedicated to message switching and device control probably did not have any implementation.   

Those designed to support scientific computation required a fast hardware implementation; a  

supercomputer without floating–point is about as useful as a car without wheels. 

In general, the standard FPU provides the basic operations: addition, subtraction, multiplication,  

and division.  It is worth note that Seymour Cray, the developer of the CDC–6600 and Cray –1,  

was so obsessed with performance that he replaced division with an inverse operator.  In order to  

compute Y/X, it first computed (1/X) and then multiplied to get Y/X = Y(1/X). 

The Intel series of microprocessors chose another route for floating–point arithmetic.  It appears  

that the early members of the sequence (8080, 8086, and 8088) did not provide for floating point,  

and that a separate floating point unit, the Intel 8087, was designed to fill the bill. 

The Intel 8086 was a 16–bit processor introduced in 1978.  The Intel 8088 was a simpler, and  

cheaper, variant of the Intel 8086.  The Intel 8087, introduced in 1980, was designed as a  

separate chip, called a “floating point coprocessor”.  Because the Intel 8087 was a new design  

intended to be a separate chip, its organization was not constrained by the Intel 8086 register set.   

As a result, a rather interesting 80–bit floating–point format was designed and implemented on  

the Intel 8087 and all chips in that sequence: the Intel 80287 (paired with the Intel 80286), the  

Intel 80387 (paired with the Intel 80386), and the Intel 80487 (paired with early versions of the  

Intel 80486).  Later modifications of the Intel 80486, and all variants of the Pentium, provided  

for floating–point arithmetic on the main CPU chip, and the separate coprocessor was dropped.   

It is worth noting that the Intel work on floating–point arithmetic became the basis for the IEEE  

standard for floating–point (IEEE–754) that has been almost universally adopted. 
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Packed decimal 

Packed decimal arithmetic, discussed in Chapter 2 of this textbook, provides for precise  

representation of very large numbers (up to 31 decimal digits).  The decision to provide support  

for packed decimal arithmetic is closely tied to the expected use of the computer.  How much  

commercial work involving cash balances will be required?  Neither the CDC–6600 nor the  

Cray–1 provided any support for packed decimal arithmetic, as they were designed for large  

scale numeric simulations.  All IBM mainframe computers, beginning with the S/360, have a  

hardware implementation of packed decimal arithmetic, as do all of the Intel floating point  

processors beginning with the Intel 8087.  Some designs, such as the PDP–11, provided only  

software emulations for packed decimal arithmetic, but apparently the performance was quite  

acceptable.  It is very easy to write such an emulator, just provide for the carry bits. 

Jumps: Absolute or Relative 

A jump, or branch, in assembly language is an unconditional change of the program flow of  

execution to begin at a new address.  The question is how to specify that address.  There are  

two possibilities; many Instruction Set Architectures implement both.  The first option is to  

specify the exact address for the jump.  This presents a problem in the design of the instruction  

set.  For example, the MIPS design calls for 32–bit instructions and allows 32–bit addresses.  If  

the instruction uses the entire 32 bits for an address, there is no room for the opcode or other  

parts of the instruction, such as register designation. 

Another approach is to use the fact that most jumps involve rather small displacements from  

the executing instruction.  Example high–level language instructions that give rise to relatively  

small jump offsets include the If–Then, If–Then–Else, While Loop, For Loop and possibly calls  

to in–module subroutines.  For example, a 16–bit relative address can specify an offset between  

–32768 and +32767 from the current instruction; this is a very large range of options.  We shall  

investigate the Pentium implementation of these addressing modes soon. 

Expression Evaluation 

We now discuss how the computer, as a total system of compiler and hardware, handles  

expressions in a higher level language.  We shall investigate the standard way of writing  

mathematical expressions, called infix notation, as well as two other variants. 

Consider the infix expression (X  Y) + (W  U), with parentheses added to make the  

evaluation order perfectly obvious.  This is an arithmetic expression written in standard form,  

called “infix form”.  There are two other forms, prefix and postfix, which are occasionally  

used in software.  Infix form has the operator in between two operands, as in “X + Y”.   

It is what we are used to, but it is hard for computers to process. 

The two other forms are prefix and postfix.  I give the LISP variant of prefix. 

Prefix: (+ (  X  Y)  (  W  U) ) 

Postfix: XYWU+ 

Implicit in each of these examples is the assumption that single letter variables are used.  Each of  

the prefix and postfix is easier for a computer to interpret than is infix.  The assumption is that  

the expression is scanned either left to right or right to left.  Here, we arbitrarily scan left to right.   

We return to this expression, but first consider a much simpler expression. 
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Infix Expressions 

The problem with handling an infix expression arises from the way the compiler scans an  

expression.  It is read one character at a time, moving left to right.  Suppose that we have a five  

symbol expression.  We are scanning left to right. 

We assume: All variables are single alphabetic characters.   

  Each alphabetic characters is taken singly and represents a variable.   

At the beginning we have five unknown symbols:       

We read the first character and find it to be a variable: X     

We read the next character and find it to be an operator: X +    

Something is being added. 

We read the next character and find it to be a variable: X + Y  . 

Can we do the addition now?  It depends on what the next character is. 

There are two basic possibilities.  Given the constraint that all variables be single letters,  

the next character must represent an operator.  There are four options, one for each of the basic  

arithmetic operations.  The two important options are “+” and “”. 

If the operator is addition, the expression is of the form X + Y + Z 

If the operator is multiplication, the expression is of the form X + Y  Z 

In the first option, we can do the addition immediately, forming (X + Y) to which Z is later  

added.  In the second option, we must wait and first do the multiplication to get (Y  Z) to  

which X is added. 

Postfix Expressions 

Postfix expressions, of the form YZX+, are much easier to scan automatically. 

With the same assumptions, we scan a five symbol postfix expression. 

At the beginning we have five unknown symbols:        

We read the first character and find it to be a variable:  Y     

We read the next character and find it also to be a variable:  Y Z    

At this point we need an operator. 

We read the next character and find it to be an operator:  Y Z    

Because this is postfix, the evaluator can immediately form the product term (Y  Z) 

We read the next character and find it to be a variable:  Y Z  X  

At this point, we need another operator.  We have two operands: (Y  Z) and X. 

We read the last character and find it to be an operator: Y Z  X + 

We do the addition and have the term (Y  Z) + X. 
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Prefix Expressions 

Prefix expressions are also easily scanned automatically.  We assume Lisp notation, with full  

use of parentheses.  Joke:  LISP stands for Lots of Insipid Stupid Parentheses. 

1. Scan the expression left to right.  If the expression does not contain another  

 parenthesized expression, evaluate it.  Otherwise, attempt to evaluate its 

 sub–expression.  Formally, this is viewed as a tree traversal. 

2. Keep “moving up” until the last is evaluated.  Here is an example. 

 Again, it will start with single digit numbers in order to be more easily read. 

Evaluate the prefix expression: ( + ( * 4 2 ) ( – 5 2 ) ( * ( + 6 4) (+ 1 1 ) ) ) 

(* 4 2) can be evaluated, so:  ( + 8 ( – 5 2 ) ( * ( + 6 4) (+ 1 1 ) ) ) 

(– 5 2) is defined as 5 – 2, so:  ( + 8 3 ( * ( + 6 4) (+ 1 1 ) ) ) 

(+ 6 4) can be evaluated, so:  ( + 8 3 ( * 10 (+ 1 1 ) ) ) 

(+ 1 1) can be evaluated, so:  ( + 8 3 ( * 10 2 ) ) 

(* 10 2) can be evaluated, so:  ( + 8  3  20 ) 

(+ 8 3 20) = 31, so:    31 

More on Postfix Evaluation 

Consider again the postfix expression YZX+.  How is this evaluated?  Any efficient evaluation  

must use a data structure called a stack.  Stacks are LIFO (Last In, First Out) data structures.   

Stacks are the data structure most naturally fit to evaluate expressions in postfix notation.  The  

stack is best viewed as an abstract data type with specific methods, each of which has a well  

defined semantic (we can say exactly what it does). 

We can also consider the stack as having a top.  Items are added to  

the stack top and then removed from the stack top.  The position of the  

stack top is indicated by a stack pointer (SP).The stack data type has  

three necessary methods, and two optional methods.  The mandatory  

methods are Push, Pop, and IsEmpty.  The standard optional methods  

are Top, and IsFull. 

Note: When studying computer networks, we speak of a “protocol stack”, which has  

 nothing to do with the ADT (Abstract Data Type) stack that we study today. 

 We shall discuss the TCP/IP protocol stack later in this course. 

Pushing Items onto the Stack 

Consider the sequence: Push (X), Push (Y), and Push (Z).  This sequence adds three items to  

the stack, in the specified order. 

Push X 

Push Y 

Push Z 
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After the third operation, Z is at the top of the stack and is the first to be removed when a Pop  

operation is performed.  The SP (Stack Pointer) is a data item internal to the stack that indicates  

the location of the top of the stack.  It is never made public by any proper stack implementation. 

We now consider the use of a stack to evaluate the postfix expression YZX+.  Such an  

expression is also called RPN for Reverse Polish Notation. 

Rules: 1. Scan left to right. 

 2. Upon reading a variable, push it onto the stack. 

 3. Upon reading a dyadic operator, pop two variables from the stack, 

  perform the operation, and push the result. 

We read the first character and find it to be a variable:  Y     

 

We read the next character and find it also to be a variable: Y Z    

 

We read the next character and find it to be an operator: Y Z   . 

This is a dyadic operator (taking two arguments), so the stack is popped twice to get the  

two, the product is evaluated, and pushed back onto the stack. 

 

We read the next character and find it to be a variable: Y Z  X  

 

We read the last character and find it to be an operator: Y Z  X + 

Again, this is a dyadic operator, so two arguments are popped from the stack, added, and  

the sum pushed back onto the stack. 

 

After this, the stack will be popped and the value placed into some variable.  This example  

just looked at the expression, without considering the assignment. 

Some of the early handheld calculators manufactured by Hewlett–Packard, such as the HP–35,  

used RPN (Reverse Polish Notation).  To add two numbers, say 20 and 35, do the following: 

 1. Punch the keys for 20 and then hit enter. 

 2. Punch the keys for 35 and then hit enter. 

 3. Punch the “+” key to add the two numbers. 

 4. The number 55 is displayed. 
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More on Prefix Evaluation 

While a postfix expression is evaluated using a stack, a prefix expression is evaluated using  

an expression tree.  The expression is ( + ( * 4 2 ) ( – 5 2 ) ( * ( + 6 4) (+ 1 1 ) ) ).  Here is the  

expression tree constructed for this expression. 

 

Software to evaluate this prefix expression would first build this tree (not very hard to do) and  

then evaluate it.  For example, the node (+ 6 4) would be replaced by 10, etc. 

The expression tree is evaluated by successively finding the leaf nodes, applying the operation  

in the parent node, and replacing that parent node with a leaf node with the correct value. 

 

 

The final value of this expression is found when the tree collapses to a root node.  It is 31. 

Almost all high–level languages, such as FORTRAN, COBOL, C/C++, and Java support  

expressions in infix form only.  LISP is the only language known to this author that used the  

prefix form.  The language FORTH, and some others, use postfix form. 

What we have been discussing to this point is the structure of expressions in a high–level  

language.  This is the result of a design choice made by the language developers.  We now  

turn to similar issues in the ISA, which are the result of the hardware design of the CPU. 
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Structure of the Machine Language 

We now consider ISA (Instruction Set Architecture) implications for the evaluation of common  

expressions.  This is the sort of issue seen in the HP–35, mentioned above.  It is not that one  

might want to enter RPN into this calculator; RPN expressions are the only type that the device  

can evaluate.  An attempt to enter something like “20 + 30 =” would be an error. 

We now consider some pseudo–assembly language translations of a simple assignment  

statement, specifically C = A + B.  The expression “A + B” is evaluated and the result is  

stored in the memory location associated with the variable C. 

Stack architecture 
In this all operands are found on a stack.  These have good code density (make good use  

of memory), but have problems with access.  Typical instructions would include: 

 Push X // Push the value at address X onto the top of stack 

 Pop Y // Pop the top of stack into address Y 

 Add  // Pop the top two values, add them, & push the result 

Here is an approximate assembly language translation of C = A + B 

  Push A 

  Push B 

  Add 

  Pop C 

This stack architecture is sometimes called “zero argument” as the mathematical operators  

do not take explicit arguments.  Only the push and pop operators reference memory. 

Single Accumulator Architectures 

There is a single register used to accumulate results of arithmetic operations.  Many hand held  

calculators with a single display line for the result are good examples of this.  The display  

shows the result of one register, which could be called an accumulator. 

The single–accumulator realization of the instruction C = A + B 

  Load A  // Load the AC from address A 

  Add B  // Add the value at address B 

  Store C  // Store the result into address C 

In each of these instructions, the accumulator is implicitly one of the operands and need not be  

specified in the instruction.  This saves space.  The single accumulator can be used to hold the  

results of addition, subtraction, logical bit–wise operators, and all types of shifts. 

The single accumulator cannot handle multiplication and division, except in restricted cases.   

The reason is that the product of two 16–bit signed numbers will be a 32–bit signed product.   

Consider squaring 24576 (2
14

 + 2
13

) or 0110 0000 0000 0000 in 16–bit binary.  The result is  

603, 979, 776 or 0010 0100 0000 0000 0000 0000 0000 0000. 

We need two 16–bit registers to hold the result.  The PDP–9 had the MQ and AC.  On the  

PDP–9, the results of this multiplication would be 

  MQ  0010 0100 0000 0000  // High 16 bits 

  AC  0000 0000 0000 0000  // Low 16 bits 
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General Purpose Register Architectures 

These have a number of general purpose registers, normally identified by number. The number  

of registers is often a power of 2: 8, 16, or 32 being common.  (The Intel architecture with its  

four general purpose registers is different.  These are called EAX, EBX, ECX, and EDX – a lot  

of history here).  Again, we shall discuss these registers in the next two sub–chapters. 

The names of the registers often follow an assembly language notation designed to differentiate  

register names from variable names.  An architecture with eight general purpose registers might  

name them: %R0, %R1, …., %R7.  The prefix “%” here indicates to the assembler that we are  

referring to a register, not to a variable that has a name such as R0.  The latter name would be  

poor coding practice. 

Designers might choose to have register %R0 identically set to 0.  Having this constant register  

considerably simplifies a number of circuits in the CPU control unit.  We shall return to this  

%R0  0 when discussing addressing modes. 

Note that a general–purpose register machine can support memory–to–memory operations,  

without direct use of any general–purpose registers.  One example is a three argument version  

of the VAX–11 add operation, ADDL3 A, B, C, which takes the contents of address B, adds  

the contents of address C, and stores the result in address A.  Another typical example is the  

packed decimal add instruction from the IBM S/360: AP S1,S2  // Add packed S2 to S1,  

which adds the packed decimal value at address S2 to that at address S1. 

General Purpose Registers with Load–Store 

A Load–Store architecture is one with a number of general purpose registers in which the only  

memory references are: 1) Loading a register from memory, and 2) Storing a register to memory 

The realization of our programming statement C = A + B might be something like 

 Load %R1, A // Load memory location A contents into register 1 

 Load %R2,  B // Load register 2 from memory location B 

 Add %R3, %R1, %R2 // Add contents of registers %R1 and %R2,  

   // placing the result into register %R3 

 Store %R3, C // Store register 3 into memory location C 

It has been found that the load–store design philosophy yields a simpler control unit, especially  

when dealing with virtual memory.  The problem standard designs have is the occurrence of a  

page fault in the middle of instruction execution.  We shall discuss page faults when we discuss  

virtual memory in a later chapter. 

It is worth note that the standard general–purpose register machines, such as the VAX–11/780 or  

the IBM S/360, can easily be programmed in the style of a load–store machine, though neither  

is a load store machine.  Here is a fragment of S/360 assembly language written in the  

load–store format. 
        L  5,A     // Load register 5 from location A 

        L  6,B     // Load register 6 from location B 

        AR 6,5     // Add contents of register 5 to register 6 

        ST 6,C     // Store register 6 into location C 

A note on the comments.  In IBM assembly language, the comment begins with the first space  

following the arguments.  Here the “//” are just from habit; they are not significant. 
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Modern Design Principles and RISC 

The RISC (Reduced Instruction Set Computer) movement advocated a simpler design with  

fewer options for the instructions.  Simpler instructions could execute faster.  Machines that  

were not RISC were called CISC (Complex Instruction Set Computers).   

One of the main motivations for the RISC movement is the fact that computer memory is no  

longer a very expensive commodity.  In fact, it is a “commodity”; that is, a commercial item  

that is readily and cheaply available.  Another motivation is the complexity of the control unit  

on the CPU; a more complex instruction set makes for a more complex control unit.  This  

control unit has to be designed to handle the slowest instruction, so that many simpler and  

faster instructions take longer than necessary to execute.  If we have fewer and simpler  

instructions, we can speed up the computer’s speed significantly.  True, each instruction might  

do less, but they are all faster. 

The Load–Store Design 

One of the slowest operations is the access of memory, either to read values from it or write  

values to it.  A load–store design restricts memory access to two instructions: load register from  

memory and store register to memory.  A moment’s reflection will show that this works only  

if we have more than one register, possibly 8, 16, or 32 registers.  

Modern Design Principles: Basic Assumptions 

Some assumptions that drive current design practice include: 

 1. The fact that most programs are written in high–level compiled languages.  Provision of  

  a large general purpose register set greatly facilitates compiler design.  Consider the  

  following assembly language translation of Z = (A*B) + (C*D). 

 Single accumulator      Multiple register 

       LOAD  A           L   4,A   // With a single accumulator, 

       MUL   B           M   4,B   // it is necessary to write  

       STORE T                     // the intermediate result to  

       LOAD  C           L   6,C   // temporary memory. 

       MUL   D           M   6,D   // This extra memory access  

       ADD   T           AR  4,6   // takes time. 

       STORE Z           ST  4,Z 

 2. The fact that current CPU clock cycle times (0.25 – 0.50 nanoseconds) are much faster  

  than memory access times.  Reducing memory access will allow the program to execute  

  more nearly at the full CPU speed. 

 3. The fact that a simpler instruction set implies a smaller control unit, thus freeing chip area  

  for more registers and on–chip cache.  It is a fact that the highest pay–off design decision  

  is to place more cache memory on the CPU chip.  No other design decision will give such  

  a boost to performance, except the equivalent addition of general–purpose registers. 

 4. The fact that execution is more efficient when a two level cache system is implemented  

  on–chip.  We have a split L1 cache (with an I–Cache for instructions and a D–Cache for  

  data) and a L2 cache.  A split L1 cache allows the CPU to fetch an instruction and access  

  data at the same time.  In chapter 12, we shall argue that a two level cache is much faster  

  than a single level cache of the same total size. 

 5. The fact that memory is so cheap that it is a commodity item. 
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Modern Design Principles 

1. Allow only fixed–length operands.  This may waste memory, but modern 

 designs have plenty of it, and it is cheap. 

2. Minimize the number of instruction formats and make them simpler, so that  

 the instructions are more easily and quickly decoded. 

3. Provide plenty of registers and the largest possible on–chip cache memory. 

4. Minimize the number of instructions that reference memory.  Preferred 

 practice is called “Load/Store” in which the only operations to reference 

 primary memory are register loads from memory and register stores into memory. 

5. Use pipelined and superscalar approaches that attempt to keep each unit  

 in the CPU busy all the time.  At the very least provide for fetching one  

 instruction while the previous instruction is being executed. 

6. Push the complexity onto the compiler.  This is called moving the DSI  

 (Dynamic–Static interface).  Let Compilation (static phase) handle any  

 any issue that it can, so that Execution (dynamic phase) is simplified. 

RISC (Reduced Instruction Set Computers) 

One of the recent developments in computer architecture is called by the acronym RISC.   

Under this classification, a design is either RISC or CISC, with the following definitions. 

 RISC  Reduced Instruction Set Computer 

 CISC  Complex Instruction Set Computer. 

The definition of CISC architecture is very simple – it is any design that does not implement  

RISC architecture.  We now define RISC architecture and give some history of its evolution. 

The source for these notes is the book Computer Systems Design and Architecture, by  

Vincent P. Heuring and Harry F. Jordan [R011]. 

One should note that while the name “RISC” is of fairly recent origin (dating to the late 1970’s)  

the concept can be traced to the work of Seymour Cray, then of Control Data Corporation,  on  

the CDC–6600 and related machines.  Mr. Cray did not think in terms of a reduced instruction  

set, but in terms of a very fast computer with a well-defined purpose – to solve complex  

mathematical simulations.  The resulting design supported only two basic data types (integers  

and real numbers) and had a very simple, but powerful, instruction set.  Looking back at the  

design of this computer, we see that the CDC–6600 could have been called a RISC design. 

As we shall see just below, the entire RISC vs. CISC evolution is driven by the desire to obtain  

maximum performance from a computer at a reasonable price.  Mr. Cray’s machines maximized  

performance by limiting the domain of the problems they would solve. 

The general characteristic of a CISC architecture is the emphasis on doing more with each  

instruction.  This may involve complex instructions and complex addressing modes; for example  

the MC68020 processor supports 25 addressing modes. 

The ability to do more with each instruction allows more operations to be compressed into the  

same program size, something very desirable if memory costs are high.   
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Another justification for the CISC architectures was the “semantic gap”, the difference between  

the structure of the assembly language and the structure of the high level languages (COBOL,  

C++, Visual Basic, FORTRAN, etc.) that we want the computer to support.  It was expected that  

a more complicated instruction set (more complicated assembly language) would more closely  

resemble the high level language to be supported and thus facilitate the creation of a compiler for  

the assembly language. 

One of the first motivations for the RISC architecture came from a careful study of the  

implications of the semantic gap.  Experimental studies conducted in 1971 by Donald Knuth and  

1982 by David Patterson showed that nearly 85% of a programs statements were simple  

assignment, conditional, or procedure calls.  None of these required a complicated instruction  

set.  It was further notes that typical compilers translated complex high level language constructs  

into simpler assembly language statements, not the complicated assembly language instructions  

that seemed more likely to be used. 

The results of this study are quoted from an IEEE Tutorial on RISC architecture [R05].  This  

table shows the percentages of program statements that fall into five broad classifications. 

Language Pascal FORTRAN Pascal C SAL 

Workload Scientific Student System System System 

Assignment 74 67 45 38 42 

Loop 4 3 5 3 4 

Call 1 3 15 12 12 

If 20 11 29 43 36 

GOTO 2 9 -- 3 -- 

Other  7 6 1 6 

The authors of this study made the following comments on the results. 

“There is quite good agreement in the results of this mixture of languages and  

applications.  Assignment statements predominate, suggesting that the simple  

movement of data is of high importance.  There is also a preponderance of  

conditional statements (If, Loop).  These statements are implemented in machine  

language with some sort of compare and branch instruction.  This suggests that  

the sequence control mechanism is important.” 

The “bottom line” for the above results can be summarized as follows. 

 1) As time progresses, more and more programs will be written in a compiled high- 

  level language, with much fewer written directly in assembly language. 

 2) The compilers for these languages do not make use of the complex instruction 

  sets provided by the architecture in an attempt to close the semantic gap. 

In 1979, the author of these notes attended a lecture by a senior design engineer from IBM.  He  

was discussing a feature of an architecture that he designed: he had put about 6 months of highly  

skilled labor into implementing a particular assembly language instruction and then found that it  

was used less than 1/10,000 of a percent of the time by any compiler. 

So the “semantic gap” – the desire to provide a robust architecture for support of high-level  

language programming turned out to lead to a waste of time and resources.  Were there any  

other justifications for the CISC design philosophy? 
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The RISC/370 

This is your authors name for a hardware / software architecture developed by David A.  

Patterson [R010].  This experiment focused on the IBM S/360 and S/370 as targets for a  

RISC compiler.  One model of interest was the S/360 model 44.  The S/360 model 44  

implements only a subset of the S/360 architecture in hardware; the rest of the functions are  

implemented in software.  This allows for a simpler and cheaper control unit.  The Model 44  

was marketed as a low–end S/360, less powerful and less costly. 

A compiler created for the RISC computer IBM 801 was adapted to emit code for the S/370  

treated as a register–to–register machine, in the style of a RISC computer.  Only a subset of the  

S/370 instructions was used as a target for the compiler.  Specifically, the type RX (memory and  

register) arithmetic instructions were omitted, as were the packed decimal instructions, all of  

which are designed to be memory to memory with no explicit register use. 

This subset ran programs 50 percent faster than the previous best optimizing compiler that used  

the full S/370 instruction set.  Possibly the S/370 was an overly complex design. 

 

 

 


