Chapter 5: Introduction to Computer Architecture

We now begin an overview of the architecture of a typical stored program computer.  It should be noted that this architecture is common to almost all computers running today, from the smallest industrial controller to the largest supercomputer.  What sets the larger computers, such as the IBM ASCII Blue (a supercomputer capable of 1015 floating point operations per second), apart from the typical PC is that many larger computers are built from a large number of processor and memory modules that communicate and work cooperatively on a problem.  The basic architecture is the same.

Stored program computers have four major components: the CPU (Central Processing Unit), the memory, I/O devices, and one or more bus structures to allow the other three components to communicate.  The figure below illustrates a typical architecture.
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Figure: Top-Level Structure of a Computer

The functions of the three top-level components of a computer seem to be obvious.  The I/O devices allow for communication of data to other devices and the users.  The memory stores both program data and executable code in the form of binary machine language.  The CPU comprises components that execute the machine language of the computer.  Within the CPU, it is the function of the control unit to interpret the machine language and cause the CPU to execute the instructions as written.  The Arithmetic Logic Unit (ALU) is that component of the CPU that does the arithmetic operations and the logical comparisons that are necessary for program execution.  The ALU uses a number of local storage units, called registers, to hold results of its operations.  The set of registers is sometimes called the register file.

Fetch-Execute Cycle
As we shall see, the fetch-execute cycle forms the basis for operation of a stored-program computer.  The CPU fetches each instruction from the memory unit, then executes that instruction, and fetches the next instruction.  An exception to the “fetch next instruction” rule comes when the equivalent of a Jump or Go To instruction is executed, in which case the instruction at the indicated address is fetched and executed.
Registers vs. Memory
Registers and memory are similar in that both store data.  The difference between the two is somewhat an artifact of the history of computation, which has become solidified in all current architectures.  The basic difference between devices used as registers and devices used for memory storage is that registers are faster and more expensive.
In modern computers, the CPU is usually implemented on a single chip.  Within this context, the difference between registers and memory is that the registers are on the CPU chip while most memory is on a different chip.  As a result of this, the registers are not addressed in the same way as memory – memory is accessed through an address in the MAR (more on this later), while registers are directly addressed.  Admittedly the introduction of cache memory has somewhat blurred the difference between registers and memory – but the addressing mechanism remains the primary difference.

The CPU contains two types of registers, called special purpose registers and general purpose registers.  The general purpose registers contain data used in computations and can be accessed directly by the computer program.  The special purpose registers are used by the control unit to hold temporary results, access memory, and sequence the program execution.  Normally, with one now-obsolete exception, these registers cannot be accessed by the program.

The program status register (PSR), also called “program status word (PSW)”, is one of the special purpose registers found on most computers.  The PSR contains a number of bits to reflect the state of the CPU as well as the result of the most recent computation.  Some of the common bits are

C
the carry-out from the last arithmetic computation

V
Set to 1 if the last arithmetic operation resulted in an overflow

N
Set to 1 if the last arithmetic operation resulted in a negative number

Z
Set to 1 if the last arithmetic operation resulted in a zero

I
Interrupts enabled (Interrupts are discussed later)

The CPU (Central Processing Unit)
The CPU is that part of the computer that “does the work”.  It fetches and executes the machine language that represents the program under execution.  It responds to the interrupts (defined later) that usually signal Input/Output events, but which can signal issues with the memory as well as exceptions in the program execution.  As indicated above, the CPU has three major components:

1)
the ALU

2)
the Control Unit

3)
the register set



a)
the general purpose register file



b)
a number of special purpose registers used by the control unit.

The ALU (Arithmetic–Logic Unit)
This unit is the part of the CPU that carries out the arithmetic and logical operations of the CPU, hence its name.  The ALU acts in response to control signals issued by the Control Unit.  Quite often there is an attached floating–point unit that handles all real–number arithmetic, so it is not completely accurate to say that the ALU handles all arithmetic.
The Control Unit
This unit interprets the machine language representing the computer program under execution and issues the control signals that are necessary to achieve the effect that should be associated with the program.  This is often the most complex part of the CPU.

Structure of a Typical Bus
A typical computer contains a number of bus structures.  We have already mentioned the system bus and a bus internal to the CPU.  Some computer designs include high-speed point-to-point busses, used for such tasks as communication to the graphics card.  In this section, we consider the structure of the system bus.  The system bus is a multi-point bus that allows communication between a number of devices that are attached to the bus.  There are two classes of devices that can be connected to the bus.

Master Device
a device that can initiate action on the bus.




The CPU is always a bus master.


Slave Device
a device that responds to requests by a bus master.




Memory is an excellent example of a slave device.

Devices connected to a bus are often accessed by address.  System memory is a primary example of an addressable device; in a byte-addressable machine (more later on this), memory can be considered as an array of bytes, accessed in the same way as an array as seen in a typical programming language.  I/O devices are often accessed by address; it is up to the operating system to know the address used to access each such device.

Memory Organization and Addressing
We now give an overview of RAM – Random Access Memory. This is the memory called “primary memory” or “core memory”.  The term “core” is a reference to an earlier memory technology in which magnetic cores were used for the computer’s memory.  This discussion will pull material from a number of chapters in the textbook.
Primary computer memory is best considered as an array of addressable units.  Such a unit is the smallest unit of memory that can have an independent address.  In a byte–addressable memory unit, each byte (8 bits) has an independent address, although the computer often groups the bytes into larger units (words, long words, etc.) and retrieves that group.  Most modern computers manipulate integers as 32–bit (4–byte) entities, but 64–bit integers are becoming common.  Many modern designs retrieve multiple bytes at a time.
In this author’s opinion, byte addressing in computers became important as the result of the use of 8-bit character codes.  Many applications involve the movement of large numbers of characters (coded as ASCII or EBCDIC) and thus profit from the ability to address single characters.  Some computers, such as the CDC-6400, CDC-7600, and all Cray models, use word addressing.  This is a result of a design decision made when considering the main goal of such computers – large computations involving floating point numbers.  The word size in these computers is 60 bits (why not 64? – I don’t know), yielding good precision for numeric simulations such as fluid flow and weather prediction.

Memory as a Linear Array
Consider a byte-addressable memory with N bytes of memory.  As stated above, such a memory can be considered to be the logical equivalent of a C++ array, declared as
byte memory [N] ;  // Address ranges from 0 through (N – 1)

The computer on which these notes were written has 384 MB of main memory, now only an average size but once unimaginably large.  384 MB = 384(220 bytes and the memory is byte-addressable, so N = 384(1048576 = 402,653,184.  Quite often the memory size will either be a power of two or the sum of two powers of two; 384 MB = (256 + 128)(220 = 228 + 227.

Early versions of the IBM S/360 provided addressability of up to 224 = 16,777,216 bytes of memory, or 4,194,304 32–bit words.  All addresses in the S/360 series are byte addresses.
The term “random access” used when discussing computer memory implies that memory can be accessed at random with no performance penalty.  While this may not be exactly true in these days of virtual memory, the key idea is simple – that the time to access an item in memory does not depend on the address given.  In this regard, it is similar to an array in which the time to access an entry does not depend on the index.  A magnetic tape is a typical sequential access device – in order to get to an entry one must read over all pervious entries.

There are two major types of random-access computer memory.  These are:

RAM
Read-Write Memory

ROM
Read-Only Memory

The usage of the term “RAM” for the type of random access memory that might well be called “RWM” has a long history and will be continued in this course.  The basic reason is probably that the terms “RAM” and “ROM” can easily be pronounced; try pronouncing “RWM”.  Keep in mind that both RAM and ROM are random access memory.

Of course, there is no such thing as a pure Read–Only memory; at some time it must be possible to put data in the memory by writing to it, otherwise there will be no data in the memory to be read.  The term “Read-Only” usually refers to the method for access by the CPU.  All variants of ROM share the feature that their contents cannot be changed by normal CPU write operations.  All variants of RAM (really Read-Write Memory) share the feature that their contents can be changed by normal CPU write operations.  Some forms of ROM have their contents set at time of manufacture, other types called PROM (Programmable ROM), can have contents changed by special devices called PROM Programmers.

The Idea of Address Space
We now must distinguish between the idea of address space and physical memory.  The address space defines the range of addresses (indices into the memory array) that can be generated.  The size of the physical memory is usually somewhat smaller, this may be by design (see the discussion of memory-mapped I/O below) or just by accident.
The memory address is specified by a binary number placed in the Memory Address Register (MAR).  The number of bits in the MAR determines the range of addresses that can be generated.   N address lines can be used to specify 2N distinct addresses, numbered 0 through 2N – 1.  This is called the address space of the computer.  The early IBM S/360 had a 24–bit MAR, corresponding to an address space of 0 through 224 – 1, or 0 through 4,194,303.
For example, we show some MAR sizes.

	Computer
	MAR bits
	Address Range

	PDP-11/20
	16
	0 to        65,535

	Intel 8086
	20
	0 to     1,048,575

	IBM 360
	24
	0 to     4,194,303

	S/370–XA
	31
	0 to 2,147,483,647

	Pentium 
	32
	0 to 4,294,967,295

	z/Series
	64
	A very big number.


The PDP-11/20 was an elegant small machine made by the now defunct Digital Equipment Corporation.  As soon as it was built, people realized that its address range was too small.

In general, the address space is much larger than the physical memory available.  For example, my personal computer has an address space of 232 (as do all Pentiums), but only 384MB = 228 + 227 bytes.  Until recently the 32–bit address space would have been much larger than any possible amount of physical memory.  At present one can go to a number of companies and order a computer with a fully populated address space; i.e., 4 GB of physical memory.  Most high-end personal computers are shipped with 1GB of memory.

Word Addresses in a Byte-Addressable Machine
Most computers today, including all of those in the IBM S/360 series,  have memories that are byte-addressable; thus each byte in the memory has a unique address that can be used to address it.  Under this addressing scheme, a word corresponds to a number of addresses.

A 16-bit word at address Z contains bytes at addresses Z and Z + 1.

A 32-bit word at address Z contains bytes at addresses Z, Z + 1, Z + 2, and Z + 3.

In many computers with byte addressing, there are constraints on word addresses.

A 16-bit word must have an even address

A 32-bit word must have an address that is a multiple of 4.

This is true of the IBM S/360 series in which 16–bit words are called “halfwords”, 
32–bit words are called “words”, and 64–bit words are called “double words”.  A halfword must have an even address, a word must have an address that is a multiple of 4 and a double word (64 bits) an address that is a multiple of 8.

Even in computers that do not enforce this requirement, it is a good idea to observe these word boundaries.  Most compilers will do so automatically.

Suppose a byte-addressable computer with a 24–bit address space.  The highest byte address is 224 – 1.  From this fact and the address allocation to multi-byte words, we conclude

the highest address for a 16-bit word is (224 – 2), and

the highest address for a 32-bit word is (224 – 4), because the 32–bit word addressed at 
(224 – 4) comprises bytes at addresses (224 – 4), (224 – 3), (224 – 2), and (224 – 1).

Byte Addressing vs. Word Addressing
We have noted above that N address lines can be used to specify 2N distinct addresses, numbered 0 through 2N – 1.  We now ask about the size of the addressable items.  As a simple example, consider a computer with a 24–bit address space.  The machine would have 16,777,216 (16M) addressable entities.  In a byte–addressable machine, such as the
IBM S/360, this would correspond to:

16 M Bytes
16,777,216
bytes, or

8 M halfwords
8,388,608
16-bit halfwords, or

4 M words
4,194,304
32–bit fullwords.

The advantages of byte-addressability are clear when we consider applications that process data one byte at a time.  Access of a single byte in a byte-addressable system requires only the issuing of a single address.  In a 16–bit word addressable system, it is necessary first to compute the address of the word containing the byte, fetch that word, and then extract the byte from the two–byte word.  Although the processes for byte extraction are well understood, they are less efficient than directly accessing the byte.  For this reason, many modern machines are byte addressable.
Big–Endian and Little–Endian
The reference here is to a story in Gulliver’s Travels written by Jonathan Swift in which two groups went to war over which end of a boiled egg should be broken – the big end or the little end.  The student should be aware that Swift did not write pretty stories for children but focused on biting satire; his work A Modest Proposal is an excellent example.

Consider the 32-bit number represented by the eight–digit hexadecimal number 0x01020304, stored at location Z in memory.  In all byte–addressable memory locations, this number will be stored in the four consecutive addresses Z, (Z + 1), (Z + 2), and (Z + 3).  The difference between big-endian and little-endian addresses is where each of the four bytes is stored.

In our example
0x01 represents bits
31
–
24,

0x02 represents bits
23
–
16,

0x03 represents bits
15
–
8,
and

0x04 represents bits
7
–
0.

As a 32-bit signed integer, the number represents 01((256)3 + 02((256)2 + 03((256) + 04
or 0(167 + 1(166 + 0(165 + 2(164 + 0(163 + 3(162 + 0(161 + 4(160, which evaluates to
1(16777216 + 2(65536 + 3(256 + 4(1 = 16777216 + 131072 + 768 + 4 = 16909060.   Note that the number can be viewed as having a “big end” and a “little end”, as in the next figure.


[image: image2.png]The Big End

o
[ 04 | TheLittle End

Byte 0





The “big end” contains the most significant digits of the number and the “little end” contains the least significant digits of the number.  We now consider how these bytes are stored in a byte-addressable memory.  Recall that each byte, comprising two hexadecimal digits, has a unique address in a byte-addressable memory, and that a 32-bit (four-byte) entry at address Z occupies the bytes at addresses Z, (Z + 1), (Z + 2), and (Z + 3).  The hexadecimal values stored in these four byte addresses are shown below.


Address
Big-Endian
Little-Endian

Z
01
04

Z + 1
02
03

Z + 2
03
02

Z + 3
04
01

The figure below shows a graphical way to view these two options for ordering the bytes copied from a register into memory.  We suppose a 32-bit register with bits numbered from 31 through 0.  Which end is placed first in the memory – at address Z? For big-endian, the “big end” or most significant byte is first written.  For little-endian, the “little end” or least significant byte is written first.
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Just to be complete, consider the 16-bit number represented by the four hex digits 0A0B, with decimal value 10(256 + 11 = 2571. Suppose that the 16-bit word is at location W; i.e., its bytes are at locations W and (W + 1).  The most significant byte is 0x0A and the least significant byte is 0x0B.  The values in the two addresses are shown below.


Address
Big-Endian
Little-Endian

W
0A
0B

W + 1
0B
0A

Here we should note that the IBM S/360 is a “Big Endean” machine.

As an example of a typical problem, let’s examine the following memory map, with byte addresses centered on address W.  Note the contents are listed as hexadecimal numbers.  Each byte is an 8-bit entry, so that it can store unsigned numbers between 0 and 255, inclusive.  These are written in hexadecimal as 0x00 through 0xFF inclusive.

	Address
	(W – 2)
	(W – 1)
	W
	(W + 1)
	(W + 2)
	(W + 3)
	(W + 4)

	Contents
	0B
	AD
	12
	AB
	34
	CD
	EF


We first ask what 32-bit integers are stored at address W.  Recalling that the value of the number stored depends on whether the format is big-endian or little-endian, we draw the memory map in a form that is more useful.
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This figure should illustrate one obvious point: the entries (W – 2), (W – 1), and (W + 4) are “red herrings”, data that have nothing to do with the problem at hand.  We now consider the conversion of the number in big-endian format.  As a decimal number, this evaluates to


1(167 + 2(166 + A(165 + B(164 + 3(163 + 4(162 + C(161 + D, or


1(167 + 2(166 + 10(165 + 11(164 + 3(163 + 4(162 + 12(161 + 13, or


1(268435456 + 2(16777216 + 10(1048576 + 11(65536 + 3(4096 + 4(256 + 12(16 + 13, or


268435456 + 33554432 + 10485760 + 720896 + 12288 + 1024 + 192 + 13, or


313210061.
The evaluation of the number as a little–endian quantity is complicated by the fact that the number is negative. In order to maintain continuity, we convert to binary (recalling that 
A = 1010, B = 1011, C = 1100, and D = 1101) and take the two’s-complement.

Hexadecimal
CD
34
AB
12
Binary
11001101
00110100
10101011
00010010
One’s Comp
00110010
11001011
01010100
11101101
Two’s Comp
00110010
11001011
01010100
11101110
Hexadecimal
32
AB
54
EE
Converting this to decimal, we have the following


3(167 + 2(166 + A(165 + B(164 + 5(163 + 4(162 + E(161 + E, or


3(167 + 2(166 + 10(165 + 11(164 + 5(163 + 4(162 + 14(161 + 14, or


3(268435456 + 2(16777216 + 10(1048576 + 11(65536 + 5(4096 + 4(256 + 14(16 + 14, or


805306368 + 33554432 + 10485760 + 720896 + 20480 + 1024 + 224 + 14, or


850089198
The number represented in little-endian form is – 850,089,198.
We now consider the next question: what 16-bit integer is stored at address W?  We begin our answer by producing the drawing for the 16-bit big-endian and little-endian numbers.
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The evaluation of the number as a 16-bit big-endian number is again the simpler choice.  The decimal value is 1(163 + 2(162 + 10(16 + 11 = 4096 + 512 + 160 + 11 = 4779.
The evaluation of the number as a little–endian quantity is complicated by the fact that the number is negative.  We again take the two’s-complement to convert this to positive.
Hexadecimal
AB
12
Binary
10101011
00010010
One’s Comp
01010100
11101101
Two’s Comp
01010100
11101110
Hexadecimal
54
EE

The magnitude of this number is 5(163 + 4(162 + 14(16 + 14 = 20480 + 1024 + 224 + 14, or
21742.  The original number is thus the negative number – 21742.
One might ask similar questions about real numbers and strings of characters stored at specific locations.  For a string constant, the value depends on the format used to store strings and might include such things as /0 termination for C and C++ strings.  A typical question on real number storage would be to consider the following:


A real number is stored in byte-addressable memory in little-endian form.


The real number is stored in IEEE-754 single-precision format.

	Address
	W
	(W + 1)
	(W + 2)
	(W + 3)

	Contents
	00
	00
	E8
	42


The trick here is to notice that the number written in its proper form, with the “big end” on the left hand side is 0x42E80000, which we have seen represents the number 116.00.  Were the number stored in big-endian form, it would be a denormalized number, about 8.32(10-41.
There seems to be no advantage of one system over the other.  Big-endian seems more natural to most people and facilitates reading hex dumps (listings of a sequence of memory locations), although a good debugger will remove that burden from all but the unlucky.

Big-endian computers include the IBM 360 series, Motorola 68xxx, and SPARC by Sun.

Little-endian computers include the Intel Pentium and related computers.

The big-endian vs. little-endian debate is one that does not concern most of us directly.  Let the computer handle its bytes in any order desired as long as it produces good results.  The only direct impact on most of us will come when trying to port data from one computer to a computer of another type.  Transfer over computer networks is facilitated by the fact that the network interfaces for computers will translate to and from the network standard, which is big-endian.  The major difficulty will come when trying to read different file types.

The big-endian vs. little-endian debate shows in file structures when computer data are “serialized” – that is written out a byte at a time.  This causes different byte orders for the same data in the same way as the ordering stored in memory.  The orientation of the file structure often depends on the machine upon which the software was first developed.

Any student who is interested in the literary antecedents of the terms “big-endian” and “little-endian” should read the quotation at the end of this chapter.

The Control Unit

“Time is nature’s way of keeping everything from happening at once”


Woody Allen

We now turn our attention to a discussion of the control unit, which is that part of the Central Processing Unit that causes the machine language to take effect.  It does this by reacting to the machine language instruction in the Instruction Register, the status flags in the Program Status Register, and the interrupts in order to produce control signals that direct the functioning of the computer.

The main strategy for the control unit is to break the execution of a machine language instruction into a number of discrete steps, and then cause these primitive steps to be executed sequentially in the order appropriate to achieve the affect of the instruction.
The System Clock
The main tool for generating a sequence of basic execution steps is the system clock, which generates a periodic signal used to generate time steps.  In some designs the execution of an instruction is broken into major phases (e.g., Fetch and Execute), each of which is broken into a fixed number of minor phases that corresponds to a time signal.  In other systems, the idea of major and minor phases is not much used.  This figure shows a typical representation of a system clock; the CPU “speed” is just the number of clock cycles per second.

[image: image6.emf]


The student should not be mislead into believing that the above is an actual representation of the physical clock signal.  A true electrical signal can never rise instantaneously or fall instantaneously.  This is a logical representation of the clock signal, showing that it changes periodically between logic 0 and logic 1.  Although the time at logic 1 is commonly the same as the time at logic 0, this is not a requirement.
Two Types of Control Units
The function of the control unit is to emit control signals.  We now ask how the control unit works.  A detailed study of the control unit should be the topic for another course, but we may make a few general remarks at this time.

[image: image7.emf]


The two major classes of control unit are hardwired and microprogrammed.  In a hardwired control unit, the control signals are the output of combinational logic (AND, OR, NOT gates, etc.) that has the above as input.  The system clock drives a binary counter that breaks the execution cycle into a number of states.  As an example, there will be a fetch state, during which control signals are emitted to fetch the instruction and an execute state during which control signals are emitted to execute the instruction just fetched.

In a microprogrammed control unit, the control signals are the output of a register called the micro-memory buffer register.  The control program (or microcode) is just a collection of words in the micro-memory or CROM (Control Read-Only Memory).  The control unit is sequenced by loading a micro-address into the (–MAR, which causes the corresponding control word to be placed into the (–MBR and the control signals to be emitted.

[image: image8.png]e CROM

Status Signals,

I

TILTTITTIT
Control Signals




In many ways, the control program appears to be written in a very primitive machine language, corresponding to a very primitive assembly language.  As an example, we show a small part of the common fetch microcode from a paper design called the Boz–5.  Note that the memory is accessed by address and that each micro–word contains a binary number, here represented as a hexadecimal number.  This just a program that can be changed at will, though not by the standard CPU write–to–memory instructions.


Address
Contents

0x20
0x0010 2108 2121

0x21
0x0011 1500 2222

0x22
0x0006 4200 2323

0x23
0x0100 0000 0000

Microprogrammed control units are more flexible than hardwired control units because they can be changed by inserting a new binary control program.  As noted in a previous chapter, this flexibility was quickly recognized by the developers of the System/360 as a significant marketing advantage.  By extending the System/360 micromemory (not a significant cost) and adding additional control code, the computer could either be run in native mode as a System/360, or in emulation mode as either an IBM 1401 or an IBM 7094.  This ability to run the IBM 1401 and IBM 7094 executable modules with no modification simplified the process of upgrading computers and made the System/360 a very popular choice.

It is generally agreed that the microprogrammed units are slower than hardwired units, although some writers dispute this.  The disagreement lies not in the relative timings of the two control units, but on a critical path timing analysis of a complete CPU.  It may be that some other part of the Fetch/Execute cycle is dominating the delays in running the program.

Interrupts and Interrupt Handling

The standard idea of a stored program computer is that it fetches machine language instructions sequentially from memory and executes each in order until the program has terminated.  Such a simplistic strategy will not suffice for modern computation.

Consider the case of I/O processing.  Let us focus on the arrival of an Ethernet frame at the Network Interface Card (NIC).  The data in the frame must be stored in primary computer memory for later processing before being overwritten.  In order to do this, the program under execution must be suspended temporarily while the program controlling the NIC starts the data transfer.  The primary mechanism for suspending one program in order to execute another program is called an interrupt.
The primary rule for processing interrupts is that the execution of the interrupted program must not be disrupted; only delayed.  There is a strategy for handling interrupts that works for all I/O interrupts.  This is a modification of the basic instruction fetch cycle.  Here it is:

1)
At the beginning of each instruction fetch state, the status of the interrupt line


is tested.  In general, this is an active–low signal.

2)
If the interrupt signal has been asserted, the CPU saves the current state of the CPU, 


which is that set of information required to restart the program as if it had not been


suspended.  The CPU then fetches the first instruction of the interrupt handler routine.

3)
The interrupt handler identifies the source of the interrupt and calls the handler


associated with the device that raised the interrupt.

4)
When the interrupt handler has finished its job, it terminates and the CPU resumes


the execution of the suspended program.  Since the complete state of the suspended 


program has been saved, it resumes execution as it nothing had happened.
Virtual Memory and Interrupt Handling
There is one situation under which the above–mentioned interrupt strategy is not adequate.  This occurs in a virtual memory scenario, in which a program can issue addresses that do not correspond to physical memory.  Here are the rules:

1)
the program issues logical addresses, 

2)
the address is converted to a physical address by the operating system, 

3)
if the physical address is not in physical memory, a page fault is raised.  This is an


interrupt that can occur after the instruction fetch phase has completed.
Consider the execution of a memory–to–memory transfer instruction, such as an assembly language instruction that might correspond to the high–level language statement Y = X.  The microprogram to implement this instruction might appear as follows.

1.
Fetch and decode the instruction.


2.
Compute the address for the label X and fetch the value stored at that address.


Store that value in a temporary CPU register.


3.
Compute the address for the label Y and store the value from the temporary


CPU register into that address.

The IBM S/360 and S/370 architecture contains a number of assembly language instructions of precisely this format.  The following two instructions are rather commonly used.


MVC
(Move Characters)
Moves a string of characters from one 



memory location to another.

ZAP
(Zero and Add Packed)
Moves a sequence of packed decimal digits



from one memory location to another.

In each scenario, the problem is the same.  Here is an analysis of the above sequence.

1.
The instruction is fetched.  If the instruction is located in a page that is not resident


in primary memory, raise a page fault interrupt.  This program is suspended until 


the page with the instruction is loaded into memory.  This is not a problem.

2.
The argument X is fetched.  If the address of X is not resident in primary memory,


raise a page fault interrupt.  The program is suspended until the page with the needed 


data is loaded into memory.  The instruction is restarted at step 1.  Since the page 


containing the instruction is also memory resident, this is not a problem.


3.
The address of Y is computed.  If that address is not in primary memory, there is 


a problem.  The instruction has already partially executed.  What to do with the 


partial results?  In this case, the answer is quite easy, because the instruction has 


had no side effects other than changing the value of a temporary register: raise a 


page fault interrupt, wait for the page to be loaded, and restart the instruction.

The handling of such interrupts that can occur after the instruction has had other side effects, such as storing a partial result into memory, can become quite complex.
As an aside, the IBM S/360 did not support virtual memory, which was introduced with the
S/370 in 1970.

Input/Output Processing

We now consider realistic modes of transferring data into and out of a computer.  We first discuss the limitations of program controlled I/O and then explain other methods for I/O.

As the simplest method of I/O, program controlled I/O has a number of shortcomings that should be expected.  These shortcomings can be loosely grouped into two major issues.

1)
The imbalance in the speeds of input and processor speeds.
Consider keyboard input.  An excellent typist can type about 100 words a minute (the author of these notes was tested at 30 wpm – wow!), and the world record speeds are 180 wpm (for 1 minute) in 1918 by Margaret Owen and 140 wpm (for 1 hour with an electric typewriter) in 1946 by Stella Pajunas.  Consider a typist who can type 120 words per minute – 2 words a second.  In the world of typing, a word is defined to be 5 characters, thus our excellent typist is producing 10 characters per second or 1 character every 100,000 microseconds.  This is a waste of time; the computer could execute almost a million instructions if not waiting.

2)
The fact that all I/O is initiated by the CPU.
The other way to state this is that the I/O unit cannot initiate the I/O.  This design does not allow for alarms or error interrupts.  Consider a fire alarm.  It would be possible for someone at the fire department to call once a minute and ask if there is a fire in your building; it is much more efficient for the building to have an alarm system that can be used to notify the fire department.  Another good example is a patient monitor that alarms if either the breathing or heart rhythm become irregular.  While such a monitor should be polled by the computer on a frequent basis, it should be able to raise an alarm at any time.
As a result of the imbalance in the timings of the purely electronic CPU and the electro-mechanical I/O devices, a number of I/O strategies have evolved.  We shall discuss these in this chapter.  All modern methods move away from the designs that cause the CPU to be the only component to initiate I/O.

The first idea in getting out of the problems imposed by having the CPU as the sole initiator of I/O is to have the I/O device able to signal when it is ready for an I/O transaction.  Specifically, we have two possibilities.

1)
The input device has data ready for reading by the CPU.  If this is the case, the CPU


can issue an input instruction, which will be executed without delay.

2)
The output device can take data from the CPU, either because it can output the data


immediately or because it can place the data in a buffer for output later.  In this case,


the CPU can issue an output instruction, which will be executed without delay.

The idea of involving the CPU in an I/O operation only when the operation can be executed immediately is the basis of what is called interrupt-driven I/O.  In such cases, the CPU manages the I/O but does not waste time waiting on busy I/O devices.  There is another strategy in which the CPU turns over management of the I/O process to the I/O device itself.  In this strategy, called direct memory access or DMA, the CPU is interrupted only at the start and termination of the I/O.  When the I/O device issues an interrupt indicating that I/O may proceed, the CPU issues instructions enabling the I/O device to manage the transfer and interrupt the CPU upon normal termination of I/O or the occurrence of errors.
An Extended (Silly) Example of I/O Strategies

There are four major strategies that can be applied to management of the I/O process:


Program-Controlled, and


Interrupt-Driven, and


Direct Memory Access, and


I/O Channel.

We try to clarify the difference between these strategies by the example of having a party in one’s house to which guests are invited.  The issue here is balancing work done in the house to prepare it for the party with the tasks of waiting at the front door to admit the guests.

Program-Controlled
The analogy for program-controlled I/O would be for the host to remain at the door, constantly looking out, and admitting guests as each one arrives.  The host would be at the door constantly until the proper number of guests arrived, at which time he or she could continue preparations for the party.  While standing at the door, the host could do no other productive work.  Most of us would consider that a waste of time.

Interrupt-Driven
Many of us have solved this problem by use of an interrupt mechanism called a doorbell.  When the doorbell rings, the host suspends the current task and answers the door.  Having admitted the guest, the host can then return to preparations for the party.  Note that this example contains, by implication, several issues associated with interrupt handling.
The first issue is priority.  If the host is in the process of putting out a fire in the kitchen, he or she may not answer the door until the fire is suppressed.  A related issue is necessary completion.  If the host has just taken a cake out of the oven, he or she will not drop the cake on the floor to answer the door, but will first put the cake down on a safe place and then proceed to the door.  In this scenario, the host’s time is spent more efficiently as he or she spends little time actually attending the door and can spend most of the time in productive work on the party.

Direct Memory Access
In this case, the host unlocks the door and places a note on it indicating that the guests should just open the door and come in.  The host places a number of tickets at the door, one for each guest expected, with a note that the guest taking the last ticket should so inform the host.  When the guest taking the last ticket has arrived, the host is notified and locks the door.  In this example the host’s work is minimized by removing the requirement to go to the door for each arrival of a guest.  There are only two trips to the door, one at the beginning to set up for the arrival of guests and one at the end to close the door.

I/O Channel
The host hires a butler to attend the door and lets the butler decide the best way to do it.  The butler is expected to announce when all the guests have arrived.
Note that the I/O channel is not really a distinct strategy.  Within the context of our silly example, we note that the butler will use one of the above three strategies to admit guests.  The point of the strategy in this context is that the host is relieved of the duties.  In the real world of computer I/O, the central processor is relieved of most I/O management duties.

Implementation of I/O Strategies

We begin our brief discussion of physical I/O by noting that it is based on interaction of a CPU and a set of registers associated with the I/O device.  In general, each I/O device has three types of registers associated with it: data, control, and status.  From the view of a programmer, the I/O device can be almost completely characterized by these registers, without regard to the actual source or destination of the data.
For this section, we shall imagine a hopelessly simplistic computer with a single CPU register, called the ACC (accumulator) and four instructions.  These instructions are:

1.
LOAD Address
Loads the accumulator from the memory address,

2.
STORE Address
Stores the accumulator contents into the memory address,

3.
GET Register
Loads the accumulator from the I/O register, and

4.
PUT Register
Stores the accumulator contents into the I/O register.

The best way to understand IBM’s rationale for its I/O architecture to consider some simpler designs that might have been chosen.  We begin with a very primitive I/O scheme.
The First Idea, and Why It Cannot Work

At first consideration, I/O in a computer system would appear trivial.  We just issue the instructions and access the data register by address, so that we have:


GET
TEXT_IN_DATA
-- this reads from the input unit.


PUT
TEXT_OUT_DATA
-- this writes to the output unit.

Strictly speaking, these instructions operate as advertised in the code fragments above.  We now expose the difficulties, beginning with the input problem.  The input unit is connected to the CPU through the register at address TEXT_IN_DATA.  Loading a CPU from that input register will always transfer some data, but might not transfer what we want.  Normally, we expect an input request to wait until a character has been input by the user and only then transfer the character to the CPU.  As written above, the instruction just copies what is in the data buffer of the input unit; it might be user data or it might be garbage left over from initialization.  We must find a way to command the unit to read, wait for a new character to have been input, and only then transfer the data to the CPU.

The output instruction listed above might as well be stated as “Just throw it over the wall and hope someone catches it.”  We are sending data to the output unit without first testing to see if the output unit is ready for data.  Early in his career as a programmer, this author wrote a program that sent characters to a teletype printer faster than they could be printed; the result was that each character printed was a combination of two or more characters actually sent to the TTY, and none were actually correct.  As this was the intended result of this experiment, this author was pleased and determined that he had learned something.

The solution to the problem of actually being able to do input and output correctly is based on the proper use of these two instructions.  The solution we shall describe is called program controlled I/O.  We shall first describe the method and then note its shortcomings.

The basic idea for program–controlled I/O is that the CPU initiates all input and output operations.  The CPU must test the status of each device before attempting to use it and issue an I/O command only when the device is ready to accept the command.  The CPU then commands the device and continually checks the device status until it detects that the device is ready for an I/O event.  For input, this happens when the device has new data in its data buffer.  For output, this happens when the device is ready to accept new data.

Pure program–controlled I/O is feasible only when working with devices that are always instantly ready to transfer data.  For example, we might use program–controlled input to read an electronic gauge.  Every time we read the gauge, the CPU will get a value.  While this solution is not without problems, it does avoid the busy wait problem.

The “busy wait” problem occurs when the CPU executes a tight loop doing nothing except waiting for the I/O device to complete its transaction.  Consider the example of a fast typist inputting data at the rate of one character per 100,000 microseconds.  The busy wait loop will execute about one million times per character input, just wasting time.  The shortcomings of such a method are obvious (IBM had observed them in the late 1940’s).
As a result of the imbalance in the timings of the purely electronic CPU and the electro–mechanical I/O devices, a number of I/O strategies have evolved.  We shall discuss these in this chapter.  All modern methods move away from the designs that cause the CPU to be the only component to initiate I/O.

The idea of involving the CPU in an I/O operation only when the operation can be executed immediately is the basis of what is called interrupt-driven I/O.  In such cases, the CPU manages the I/O but does not waste time waiting on busy I/O devices.  There is another strategy in which the CPU turns over management of the I/O process to the I/O device itself.  In this strategy, called direct memory access or DMA, the CPU is interrupted only at the start and termination of the I/O.  When the I/O device issues an interrupt indicating that I/O may proceed, the CPU issues instructions enabling the I/O device to manage the transfer and interrupt the CPU upon normal termination of I/O or the occurrence of errors.

Interrupt Driven I/O
Here the CPU suspends the program that requests the Input and activates another process.  While this other process is being executed, the input device raises 80 interrupts, one for each of the characters input.  When the interrupt is raised, the device handler is activated for the very short time that it takes to copy the character into a buffer, and then the other process is activated again.  When the input is complete, the original user process is resumed.

In a time–shared system, such as all of the S/370 and successors, the idea of an interrupt allows the CPU to continue with productive work while a program is waiting for data.  Here is a rough scenario for the sequence of events following an I/O request by a user job.

1.
The operating system commands the operation on the selected I/O device.


2.
The operating system suspends execution of the job, places it on a wait queue,


and assigns the CPU to another job that is ready to run.


3.
Upon completion of the I/O, the device raises an interrupt.  The operating system


handles the interrupt and places the original job in a queue, marked as ready to run.


4.
At some time later, the job will be run.

In order to consider the next refinement of the I/O structure, let us consider what we have discussed previously.  Suppose that a line of 80 typed characters is to be input.

Interrupt Driven

Here the CPU suspends the program that requests the Input and activates another process.  While this other process is being executed, the input device raises 80 interrupts, one for each of the characters input.  When the interrupt is raised, the device handler is activated for the very short time that it takes to copy the character into a buffer, and then the other process is activated again.  When the input is complete, the original user process is resumed.

Direct Memory Access
DMA is a refinement of interrupt-driven I/O in that it uses interrupts at the beginning and end of the I/O, but not during the transfer of data.  The implication here is that the actual transfer of data is not handled by the CPU (which would do that by processing interrupts), but by the I/O controller itself.  This removes a considerable burden from the CPU.

In the DMA scenario, the CPU suspends the program that requests the input and again activates another process that is eligible to execute.  When the I/O device raises an interrupt indicating that it is ready to start I/O, the other process is suspended and an I/O process begins.  The purpose of this I/O process is to initiate the device I/O, after which the other process is resumed.  There is no interrupt again until the I/O is finished.

The design of a DMA controller then involves the development of mechanisms by which the controller can communicate directly with the computer’s primary memory.  The controller must be able to assert a memory address, specify a memory READ or memory WRITE, and access the primary data register, called the MBR (Memory Buffer Register).
Immediately, we see the need for a bus arbitration strategy – suppose that both the CPU and a DMA controller want to access the memory at the same time.  The solution to this problem is called “cycle stealing”, in which the CPU is blocked for a cycle from accessing the memory in order to give preference to the DMA device.

Any DMA controller must contain at least four registers used to interface to the system bus.


1)
A word count register (WCR) – indicating how many words to transfer.

2)
An address register (AR) – indicating the memory address to be used.

3)
A data buffer.

4)
A status register, to allow the device status to be tested by the CPU.

In essence, the CPU tells the DMA controller “Since you have interrupted me, I assume that you are ready to transfer data.  Transfer this amount of data to or from the memory block beginning at this memory address and let me know when you are done or have a problem.”
I/O Channel

A channel is a separate special-purpose computer that serves as a sophisticated Direct Memory Access device controller.  It directs data between a number of I/O devices and the main memory of the computer.  Generally, the difference is that a DMA controller will handle only one device, while an I/O channel will handle a number of devices.

The I/O channel concept was developed by IBM (the International Business Machine Corporation) in the 1940’s because it was obvious even then that data Input/Output might be a real limit on computer performance if the I/O controller were poorly designed.  By the IBM naming convention, I/O channels execute channel commands, as opposed to instructions.

There are two types of channels – multiplexer and selector.
A multiplexer channel supports more than one I/O device by interleaving the transfer of blocks of data.  A byte multiplexer channel will be used to handle a number of low-speed devices, such as printers and terminals.  A block multiplexer channel is used to support higher-speed devices, such as tape drives and disks.

A selector channel is designed to handle high speed devices, one at a time.  This type of channel became largely disused prior to 1980, probably replaced by blocked multiplexers.

Each I/O channel is attached to one or more I/O devices through device controllers that are similar to those used for Interrupt-Driven I/O and DMA, as discussed above.
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I/O Channels, Control Units, and I/O Devices

In one sense, an I/O channel is not really a distinct I/O strategy, due to the fact that an I/O channel is a special purpose processor that uses either Interrupt-Driven I/O or DMA to affect its I/O done on behalf of the central processor.  This view is unnecessarily academic.

In the IBM System-370 architecture, the CPU initiates I/O by executing a specific instruction in the CPU instruction set: EXCP for Execute Channel Program.  Channel programs are essentially one word programs that can be “chained” to form multi-command sequences.

Physical IOCS

The low level programming of I/O channels, called PIOCS for Physical I/O Control System, provides for channel scheduling, error recovery, and interrupt handling.  At this level, the one writes a channel program (one or more channel command words) and synchronizes the main program with the completion of I/O operations.  For example, consider double-buffered I/O, in which a data buffer is filled and then processed while another data buffer is being filled.  It is very important to verify that the buffer has been filled prior to processing the data in it.

In the IBM PIOCS there are four major macros used to write the code.


CCW
Channel Command Word

The CCW macro causes the IBM assembler to construct an 8-byte channel command word.  The CCW includes the I/O command code (1 for read, 2 for write, and other values), the start address in main memory for the I/O transfer, a number of flag bits, and a count field.


EXCP
Execute Channel Program

This macro causes the physical I/O system to start an I/O operation.  This macro takes as its single argument the address of a block of channel commands to be executed.


WAIT

This synchronizes main program execution with the completion of an I/O operation.  This macro takes as its single argument the address of the block of channel commands for which it will wait.

Chaining

The PIOCS provides a number of interesting chaining options, including command chaining.  By default, a channel program comprises only one channel command word.  To execute more than one channel command word before terminating the I/O operation, it is necessary to chain each command word to the next one in the sequence; only the last command word in the block does not contain a chain bit.

Here is a sample of I/O code.

The main I/O code is as follows.  Note that the program waits for I/O completion.


// First execute the channel program at address INDEVICE.




EXCP
INDEVICE

// Then wait to synchronize program execution with the I/O



WAIT
INDEVICE


// Fill three arrays in sequence, each with 100 bytes.

INDEVICE
CCW  2, ARRAY_A, X’40’, 100



CCW  2, ARRAY_B, X’40’, 100



CCW  2, ARRAY_C, X’00’, 100

The first number in the CCW (channel command word) is the command code indicating the operation to be performed; e.g., 1 for write and 2 for read.  The hexadecimal 40 in the CCW is the “chain command flag” indicating that the commands should be chained.  Note that the last command in the list has a chain command flag set to 0, indicating that it is the last one.

Front End Processor

We can push the I/O design strategy one step further – let another computer handle it.  One example that used to be common occurred when the IBM 7090 was introduced.  At the time, the IBM 1400 series computer was quite popular.  The IBM 7090 was designed to facilitate scientific computations and was very good at that, but it was not very good at I/O processing.  As the IBM 1400 series excelled at I/O processing it was often used as an I/O front-end processor, allowing the IBM 7090 to handle I/O only via tape drives.

The batch scenario worked as follows:

1)
Jobs to be executed were “batched” via the IBM 1401 onto magnetic tape.  This 


scenario did not support time sharing.

2)
The IBM 7090 read the tapes, processed the jobs, and wrote results to tape.

3)
The IBM 1401 read the tape and output the results as indicated.  This output


included program listings and any data output required.

Another system that was in use was a combined CDC 6400/CDC 7600 system (with computers made by Control Data Corporation), in which the CDC 6400 operated as an I/O front-end and wrote to disk files for processing by the CDC 7600.  This combination was in addition to the fact that each of the CDC 6400 and CDC 7600 had a number of IOPS (I/O Processors) that were essentially I/O channels as defined by IBM.
Gulliver’s Travels and “Big-Endian” vs. “Little-Endian”
The author of these notes has been told repeatedly of the literary antecedents of the terms “big-endian” and “little-endian” as applied to byte ordering in computers.  In a fit of scholarship, he decided to find the original quote.  Here it is, taken from Chapter IV of Part I (A Voyage to Lilliput) of Gulliver’s Travels by Jonathan Swift, published October 28, 1726.
The edition consulted for these notes was published in 1958 by Random House, Inc. as a part of its “Modern Library Books” collection.  The LC Catalog Number is 58-6364.

The story of “big-endian” vs. “little-endian” is described in the form on a conversation between Gulliver and a Lilliputian named Reldresal, the Principal Secretary of Private Affairs to the Emperor of Lilliput.  Reldresal is presenting a history of a number of struggles in Lilliput, when he moves from one difficulty to another.  The following quote preserves the unusual capitalization and punctuation found in the source material.

“Now, in the midst of these intestine Disquiets, we are threatened with an Invasion from the Island of Blefuscu, which is the other great Empire of the Universe, almost as large and powerful as this of his majesty. ….

[The two great Empires of Lilliput and Blefuscu] have, as I was going to tell you, been engaged in a most obstinate War for six and thirty Moons past.  It began upon the following Occasion.  It is allowed on all Hands, that the primitive Way of breaking Eggs before we eat them, was upon the larger End: But his present Majesty’s Grand-father, while he was a Boy, going to eat an Egg, and breaking it according to the ancient Practice, happened to cut one of his Fingers.  Whereupon the Emperor his Father, published an Edict, commanding all his Subjects, upon great Penalties, to break the smaller End of their Eggs.  The People so highly resented this Law, that our Histories tell us, there have been six Rebellions raised on that Account; wherein one Emperor lost his Life, and another his Crown.  These civil Commotions were constantly fomented by the Monarchs of Blefuscu; and when they were quelled, the Exiles always fled for Refuge to that Empire.  It is computed, that eleven Thousand Persons have, at several Times, suffered Death, rather than submit to break their Eggs at the smaller end.  Many hundred large Volumes have been published upon this Controversy: But the Books of the Big-Endians have been long forbidden, and the whole Party rendered incapable by Law of holding Employments.”

Jonathan Swift was born in Ireland in 1667 of English parents.  He took a B.A. at Trinity College in Dublin and some time later was ordained an Anglican priest, serving briefly in a parish church, and became Dean of St. Patrick’s in Dublin in 1713.  Contemporary critics consider the Big-Endians and Little-Endians to represent Roman Catholics and Protestants respectively.  Lilliput seems to represent England, and its enemy Blefuscu is variously considered to represent either France or Ireland.  Note that the phrase “little-endian” seems not to appear explicitly in the text of Gulliver’s Travels.
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