
Page 125 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Chapter 6: The Assembly Process

This chapter will present a brief introduction to the functioning of a standard two–pass
assembler. It will focus on the conversion of the text of an assembly language program,
written in a form that humans can read, into a machine language program that can be loaded
into memory and executed by a computer.

Particular attention will be placed on a logical construct called the location counter. This is
a counter used to allocate memory addresses to each line of machine code, whether it be an
executable instruction or a location reserved to store some value.

This chapter will then briefly discuss the process of loading and executing an assembly
language program. It will close with a few comments on the essential differences between a
compiler processing a high level program and an assembler processing its program.

The Sample Program Fragment
We shall focus on a fragment of assembly language code for the single high–level line of
code that adds three variables and places the result in a fourth variable.

W = X + Y + Z

Before giving the assembly language equivalent of this code fragment, we note that addition
is basically a dyadic instruction; it takes two arguments and produces a single result. Due to
the lack of a primitive three–input addition instruction, the above code fragment will be
processed somewhat as if it were the following lines of high–level code.

W = X

W = W + Y

W = W + Z

Here is a fragment of assembly language code that includes a translation of the above
high–level code. This discussion focuses on allocation of addresses to items in the assembly
language; thus it will use a number of concepts without sufficient explanation.

BALR 12,0 LOAD REGISTER 12 WITH CURRENT ADDRESS
USING *,12 AND USE IT AS A BASE FOR ADDRESSING.
L 5,X VALUE OF X INTO REGISTER 3
A 5,Y ADD VALUE OF Y TO REGISTER 5
A 5,Z ADD VALUE OF Z TO REGISTER 5
ST 5,W STORE SUM INTO W

W DC F‘0’ W HAS AN INITIAL VALUE OF 0
X DC F‘1’ X HAS AN INITIAL VALUE OF 1
Y DC F‘2’ Y HAS AN INITIAL VALUE OF 2
Z DC F‘3’ Z HAS AN INITIAL VALUE OF 3

At this point, we must notice a major flaw in the code. Every line of the code is correct, and
formatted in the standard style. Every instruction will execute correctly. The difficulty will
arise after the “ST 5,W” has been executed, placing a value of 6 into location W.

The program has no STOP or branch statement, so it will start executing the data.



S/370 Assembler Language The Assembly Process

Page 126 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The Two–Pass Assembler
We now examine the action of a two–pass assembler on the above code fragment. Roughly
speaking, the functions of the passes are as follows.

Pass 1 This associates addresses with the various labels used. The code
fragment above uses four labels: W, X, Y, and Z.

Pass 2 Uses these addresses to generate the machine language code for each
line of assembly language.

The assembler assigns addresses by use of the location counter, here abbreviated LC, to
track the size of the address space already allocated. Later discussions of the LC will reflect
on its explicit use within the text of an assembler language program and treat it almost as a
general purpose register (which it is not), but this discussion treats it as a conceptual device.

We shall now trace the operation of the assembler on these program statements, generally
considering only one line at a time. The student should recall that some of these concepts,
especially the handling of the first two lines, will be explained very fully at a later time.

The first two lines of the code above should be viewed almost as non–executable. These are
used to “establish addressability” in the standard parlance. In effect, they tell the assembler
how to set an initial value for the location counter.

BALR 12,0 LOAD REGISTER 12 WITH CURRENT ADDRESS
USING *,12 AND USE IT AS A BASE FOR ADDRESSING.

Recalling that addresses issued by the assembler may be adjusted when the program is loaded
into memory, we note that the affect of this pair of lines is to set the LC.

Pass 1 processes the third line.
L 5,X VALUE OF X INTO REGISTER 3

At this point, we have LC = 0, as it was just initialized. The instruction will be assigned to
address 0. The instruction is a type RX, requiring four bytes for its storage.

Pass 1 processes line 4
A 5,Y ADD VALUE OF Y TO REGISTER 5

Since the previous instruction requires 4 bytes, the location counter has been incremented, so
that LC = 4 and this instruction will be placed at address 4. This instruction is also a type
RX, and also required four bytes. The next instruction will be at address 8.

Pass 1 processes line 5
A 5,Z ADD VALUE OF Z TO REGISTER 5

Since the previous instruction requires 4 bytes, the location counter has been incremented, so
that LC = 8 and this instruction will be placed at address 8. This instruction is also a type
RX, and also required four bytes. The next instruction will be at address 12 (decimal).

Pass 1 processes line 6
ST 5,W STORE SUM INTO W

Since the previous instruction requires 4 bytes, the location counter has been incremented, so
that LC = 12 and this instruction will be placed at address 12. This instruction is also a type
RX, and also required four bytes. The next instruction will be at address 16 (decimal).



S/370 Assembler Language The Assembly Process

Page 127 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Pass 1 processes line 7
W DC F‘0’ W HAS AN INITIAL VALUE OF 0
Since the previous instruction requires 4 bytes, the location counter has been incremented, so
that LC = 16. This line is not an instruction, but is a declarative, used to define a label and
allocate storage space for a value to be associated with that label.

This line declares space to store a 32–bit fullword, so it allocates four bytes for storage. The
next line will be associated with address 20 (decimal). This line defines the symbol W as
being associated with address 16 (decimal).

Pass 1 processes line 8
X DC F‘1’ X HAS AN INITIAL VALUE OF 1
Since the previous declarative requires 4 bytes, the location counter has been incremented, so
that LC = 20, and the label X will be associated with address 20 (decimal).

This line also declares space to store a 32–bit fullword, so it allocates four bytes for storage.
The next line will be associated with address 24 (decimal).

Pass 1 processes line 9
Y DC F‘2’ Y HAS AN INITIAL VALUE OF 2
Since the previous declarative requires 4 bytes, the location counter has been incremented, so
that LC = 24, and the label Y will be associated with address 24 (decimal).

This line also declares space to store a 32–bit fullword, so it allocates four bytes for storage.
The next line will be associated with address 28 (decimal).

Pass 1 processes line 10
Z DC F‘3’ Z HAS AN INITIAL VALUE OF 3
Since the previous declarative requires 4 bytes, the location counter has been incremented, so
that LC = 28, and the label Z will be associated with address 28 (decimal).

One of the key outputs of pass 1 is a table associating each label with it address. Up to now,
we have been using decimal addresses. At this point, we must translate to hexadecimal.

Label Address
Decimal Hexadecimal

W 16 0x10
X 20 0x14
Y 24 0x18
Z 28 0x1C

One should note that our simple code sample is atypical in one regard. All labels in this
fragment are associated with values to be processed. A more typical program would have
labels associated with executable statements. The processing will be the same; as each line is
processed, the value of the LC will be associated with any label found on the line.

Pass 2 of the assembler will generate the binary machine code associated with each line and
prepare it for loading into the computer memory. At this point, we note another artificiality
of the simple program fragment; each line corresponds to exactly four bytes. As we shall see
later, this is rarely the case for IBM S/370 Assembler Language.



S/370 Assembler Language The Assembly Process

Page 128 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Loading the Machine Code
Before considering the actions of a loader, it would help to give a representation of the
results of pass 1 of the assembler. The following listing gives the essence of what was done.

Address Assembly Statement
0000 L 5,X
0004 A 5,Y
0008 A 5,Z
000C ST 5,W
0010 W DC F‘0’
0014 X DC F‘1’
0018 Y DC F‘2’
001C Z DC F‘3’

Note that the addresses listed here are generated by the assembler and relative to the address
assigned to the first one listed here. When the code is loaded into memory and made ready to
execute, each of these statements will be moved to another address. One of the jobs of the
linking loader is to adjust these addresses.

Suppose that the program were loaded into address 0x1400 of real memory. Here is what the
memory map, as seen by the operating system, would appear to be.

Address Assembly Statement
1400 L 5,X
1404 A 5,Y
1408 A 5,Z
140C ST 5,W
1410 W DC F‘0’
1414 X DC F‘1’
1418 Y DC F‘2’
141C Z DC F‘3’

There are two approaches to handling this issue of addressing, which arises from the fact that
the assembler addresses are different from those physical memory addresses into which the
program is loaded. The first one relates to altering the machine code generated by pass 2 of
the assembler. Since the System/370 does not use this approach, we shall not discuss it.

The second approach depends on the fact that relocating a fragment of code does not change
the addresses of any line in the fragment relative to the addresses of any other fragment.
Consider each of the two fragments of code listed above. Simple subtraction will show that
the address of each statement relative to the first one listed remains constant.

This observation forms the basis of the addressing modes used by the IBM System/370.
Consider now the pair of code lines that we have not discussed.

BALR 12,0 LOAD REGISTER 12 WITH CURRENT ADDRESS
USING *,12 AND USE IT AS A BASE FOR ADDRESSING.

The effect of these two lines is to load the absolute memory address of the line of code
following the second statement into general purpose register 12, and make all address
references relative to that stored value.



S/370 Assembler Language The Assembly Process

Page 129 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Pass 2 of the Assembler
The primary function of the second pass of the assembler is to emit binary machine language.
Here we shall jump ahead a bit and show the code generated. The student should be aware
that all of this will be explained in great detail in a later chapter; the point now is just to see
the association of machine code with addresses.

All of the instructions used in this program fragment are what is called “Type RX”.
Instructions in this format require four bytes, represented as eight hexadecimal digits.
The format of such an instruction is shown below.

Byte 1 Byte 2 Byte 3 Byte 4
OP R X B D D D

The first byte is the opcode for the instruction, represented as two hexadecimal digits.
For our instructions they are L Load Register 0x58

A Add to Register 0x5A
ST Store Register 0x50

The second byte contains two hexadecimal digits. The first is for the affected register, here
we are using 5. The second is for an index register. As this example does not use indexed
addressing, the value placed in this digit is 0.

The next two bytes contain the base register used, represented by a single hexadecimal digit.
Here we specify 0xC, because register 12 is used as a base. The “DDD” represents a
displacement address given as three hexadecimal digits.

Here is the output of pass 2 of the assembler.

Address Contents Assembly Statement
0000 58 50 C0 10 L 5,X
0004 5A 50 C0 14 A 5,Y
0008 5A 50 C0 18 A 5,Z
000C 50 50 C0 1C ST 5,W
0010 00 00 00 00 W DC F‘0’
0014 00 00 00 01 X DC F‘1’
0018 00 00 00 02 Y DC F‘2’
001C 00 00 00 03 Z DC F‘3’

A few points should be clear in the listing above.

1. The executable instructions produce code that follows a standard
format that is known to the assembler.

2. Each constant, here defined by a DC declarative, is just transformed
into a hexadecimal number of the proper length.

3. This code gets around the issue of absolute memory addressing by
making all addresses relative to the first one in the list.

4. This code lacks any proper termination code, so that it will simply
attempt to execute the data. This will cause problems.



S/370 Assembler Language The Assembly Process

Page 130 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Compilers vs. Assemblers: Some Preliminary Remarks
At this point, it would be helpful to note a few differences between the actions of a compiler
and the actions of a typical assembler. Each takes a program written in text written by
humans and emits a machine language program that is executable on a computer.

The major difference between a compiled language and an assembled language has to do
with the construct called a variable in a high–level language. While it is tempting to refer to
data labels in assembler code as variables, this is not strictly correct.

The idea of a high–level language variable refers to a binding of three different attributes
associated with the label: the storage location, the data type, and the value. It is important to
recall that the compiler manages much of this automatically, following some directions that
are found in the code. Consider the following Java code, almost correct and roughly
equivalent to the assembly code we have just seen.

int w = 0;
int x = 1;
int y = 2;
int z = 3;

w = x + y + z;

In this language we have true variables. Note that the variables are simply declared and
given initial values. There is no need (or ability) to specify the storage locations assigned to
each. The compiler will do that automatically.

In the above Java code, it is obvious that each variable is declared as an integer. For this
reasons, the “+” sign in the line of code is interpreted by the compiler as integer addition.
Put another way, the declaration of the variable type defines the operations applied to it.

The situation in assembler coding is quite different. Each label (what might very loosely be
called a variable) must have its storage allocation specifically in the code. Furthermore, each
label must be declared in a location that will not interfere with the execution of the code.
The student will note this as an acknowledged failure of the assembly code fragment above.

The second major difference between assembler code and high–level code is that, in
assembler, the data declarations do not define the operations. Each operation is specific to a
data type and can be applied to another data type with amusing results.

Consider the following slight modification of the assembly code above.

LH 5,X VALUE OF X INTO REGISTER 3
AH 5,Y ADD VALUE OF Y TO REGISTER 5
AH 5,Z ADD VALUE OF Z TO REGISTER 5
STH 5,W STORE SUM INTO W

W DC F‘0’ W HAS AN INITIAL VALUE OF 0
X DC F‘1’ X HAS AN INITIAL VALUE OF 1
Y DC F‘2’ Y HAS AN INITIAL VALUE OF 2
Z DC F‘3’ Z HAS AN INITIAL VALUE OF 3

The data are still declared as 32–bit fullwords, but the operations are specific to 16–bit
halfwords. The code will execute, and the answer will be 0.



S/370 Assembler Language The Assembly Process

Page 131 Chapter 6 Revised June 26,2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Since I have mentioned this possibility of mismatching the assembler instruction with the
data type of the operands, I think that I should explain what is going on. Recall the address
assignments made by the assembler: W at 0x10, X at 0x14, Y at 0x18, and Z at 0x1C.

Consider the hexadecimal representation of the 32–bit number stored at address X. It is
00 00 00 01. Here is the memory map, in which the addresses are byte addresses.

Address Contents
0x14 00
0x15 00
0x16 00
0x17 01

We now consider the effect of two different instructions.

L 5, X Go to address 0x14. Get the four bytes at addresses 0x14, 0x15, 0x16 and
0x17. Treat these as a 32–bit integer and load into register 5.

LH 5, X Go to address 0x14. Get the two bytes at addresses 0x14 and 0x15.
Treat these as a 16–bit integer, sign extend to 32 bits, and load into register 5.

Note that the two–byte value stored at address 0x14 is 00 00, which will be interpreted as
decimal 0. The same is true for the values at addresses Y and Z.

To repeat himself, the author invites the student to note the names used in this part of the
discussion. The symbol “X”, which would be called a variable in a high–level language, will
be referred to either as an address or as a label. In assembler language, it is never exactly
correct to speak of a variable, though the term does have some valid informal use.

As another obvious example, consider the assembler language that might translate the
high–level language statement Y = X.

L 6, X LOAD REGISTER 6 WITH THE VALUE AT ADDRESS X.
ST 6, Y STORE THAT VALUE INTO ADDRESS Y.


