Chapter 8: Addressing in the I BM S/370

All stored—program computers run programs that have been converted to binary machine
code and loaded into the primary memory. The presence of virtual memory on most modern
computersisjust avariation of that scheme; the basic idea remains the same.

Fundamental to the execution of aloaded computer program is the association of an absolute
address in primary memory for every line of code and dataitem. Again, the presence of
virtual memory adds a variation on this scheme, but does not change the basic idea.

There are two types of addresses in avirtual memory system: the logical addressissued by
the program and the physical address used for actual memory reference. In fact, the basic
definition of virtual memory is that it is a mechanism for decoupling logical addresses from
physical addresses. In avirtua memory system, the executing program calcul ates alogical
address, and some mechanism (usually part of the Operating System) converts that logical
address into a physical address that is used for the actua memory reference.

Whileit isafact that almost every implementation of virtual memory makes use of adisk as
abacking store, reading sections of the program and data into physical memory as needed,
thisis not an essentia part of the definition. Asamatter of fact, it is possible (but very
misleading) to claim that the early IBM mainframe computers supported virtual memory: the
physical address was always the logical address.

This chapter discusses the mechanisms by which an executing /370 assembler language
program generates alogical address that will later be converted to aphysical address. While
later models of the IBM Mainframe line, such as the current z/10, make use of considerably
more complex mechanismsto generate logical addresses, the methods discussed here will
still work in a program executing on these more modern systems.

Perhaps the major difference between the early and current models in the IBM Mainframe
lineisthe size of logical address that can be generated. There are three different phases of
address generation: 24 bit, 31 bit, and 64 bit. The progress in evolution of the address space
is shown in the following table.

Address Space | Year First M odel

24 bits 1964 /360 and early §/370

31 hits 1983 3081 processor running S/370-XA

64 bits 2000 zSeries model 900 running Z/OS or Z/VM

The curious reader might wonder why IBM elected to use a 31-bit address space rather than
a 32-bit address space when it introduced S/370-XA. The answer seemsto have been a
desire to maintain compatibility with some of the instructions on the S/360.

This chapter will focus exclusively on the mechanisms used to generate the 24-bit logical
addresses in the S/360 and early S/370 models. As suggested above, there are 2 reasons.

1. Programswritten in this mode will still run on the modern zSeries servers.

2. Thissimpler schemeillustrates the methods used in all systemsto generate
addresses without getting lost in the complexity of a 64-bit address space.

Page 148 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Thetopicsin this chapter include the following.
1. A review of 32-bit binary arithmetic, as described by IBM.

2. A characterization of the sixteen general—purpose registersin the
System/370. Which arereally genera purpose?

3. Control sections and their relation to address calculation.
Base register addressing. Computing effective addresses.
5. Assigning and loading base registers.

32-bit binary arithmetic, asdescribed by IBM.

The IBM System/370 architecture calls for sixteen general—purpose registers, numbered
0 through 15, or 0 through F in hexadecimal. Each of these registers can store a 32—bit
signed binary integer in two’ s—complement form. The range of these integersis
—21t0 2%~ 1, inclusive, or —2,147,483,648 through 2,147,483,6647.

The IBM standard calls for the bits in the registers to be numbered |eft to right. Notice that
thisis not a standard used by other designs. In particular, it is not used in the lecture
material for other courses.

In the IBM notation, bit Oisthe sign bit. Itis 1 for a negative number and O for a non—
negative. Consider a 32-hit integer. In some terminology, bit 0 is said to be the sign bit and
bits1— 31 aresaid to be data. Thus, what is often called a 32-bit signed integer might be
referenced in the IBM literature as a 31-bit integer. Thisis not the way | would say it,

but it is the terminology we shall use for this course.

To be specific, consider an eight-bit integer, which can store —128 through 127 asa
two’ s—=complement signed integer. All notations call for the bits to be numbered O through 7.
The bit labels would be as follows.

The IBM notation

Bit Number | O 1 2 3 4 5 6 7
Use Sigh | MSB LSB

The More Common Notation

Bit Number | 7 6 5 |4 |3 |2 |1 |O
Use Sign | MSB LSB

For the IBM S/370 addressing scheme, there are two number systems that are significant.
Each is an unsigned number system, so that there are no negative values considered. These
systems are 12-bit unsigned integers and 24-bit unsigned integers. Each of these systemsis
used in address computation.

The range of a 12-bit unsigned integer is from 0 through 2*2 - 1, or 0 through 4,095
inclusive, as 2% = 4,096.

The range of a 24-bit unsigned integer is from 0 through 2** - 1, or 0 through 16,777,215
inclusive, as 2* = 16,777,216.

Page 149 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

The General Purpose Registers

The general—purpose registersin the System/370 are identified by number: 0 — 15, or

0- Finhexadecima. Of these, only the ten registers 3 through 12 (3 - C in hexadecimal)
can be used for any purpose. The other six registers are “less general purpose” and should be
used with caution.

Registers 0 and 1 can be used as temporary registers, but calls to supervisor routines will
destroy their contents.

Register 2 can be used as atemporary and possibly as a base register.
The TRT (Trandate and Test) instruction will change the value of this register.

Registers 13, 14, and 15 are used by the control programs and subprograms.

Each of the sixteen registersisidentified by afour—bit binary number, or equivalently by a
single hexadecimal digit.

Suggested convention: Useregister 12 as the single required base register.
The standard prefix code would contain the following sequence.

BALR 12, O

USI NG *, 12
Within this scheme, only registers 3 through 11 (3 through B, in hexadecimal) are to be
viewed astruly general—purpose. All other registers have pre—assigned uses.

Recall that many programs will begin with some equate statements, in particular those that
give more useable symbolic names to registers. In this scheme, the above would appear as:

R12 EQU 12 Synonym for 12
O her decl arations

BALR R12, O

USI NG *, R12

Base Register Addressing
The System/370 uses a common design feature that splits addresses into two parts:

1. A baseaddress, stored in a specified base register.
In general, only registers 3 through 12 should be used as base registers.

2. A displacement, specifying the positive offset (in bytes) from the start
of the section. The System/370 uses a 12-bit number for this displacement.
The displacement value isin the range 0 through 4095, inclusive.

The format of the addressin thisform is as follows:
|B|DDD|

where B is the single hexadecimal digit indicating the base register, and
“D D D” denotes the three hexadecimal digits used to specify the offset.

Suppose that general—purpose register 3 contains the value X’ 4500’.

The address reference 3507, interpreted as | 3 | 507 | refersto the address that is of fset
X'507" from the value stored in the base register. The base register is 3, with contents
X‘4500", so the valueis X’4500" + X'507" = X’4A07' In hexadecima 5+ 5=A.

Page 150 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

NOTE: Register O cannot be used as a base register. The assembler will interpret
theaddress| 0| D D D | asno basereqgister being used.

Moreon Register 0 As a Base Register
The bottom lineis“Don’t try this (at home)”. In other words, any attempt to use register O
for anything other than temporary resultsis likely to cause problems.

As noted above, some addresses are givenintheform |B | D D D |, where
B isahexadecimal digit indicating a base register, and
D D D isaset of three hexadecimal digits indicating an offset in the range 0 — 4095.

If the object code generated hastheform |0 | D D D |, then no base register isused in
computing the address. We shall use this later to load registers with positive constants.

One has another option that might force register O to be a base register. We can start the
program as follows.

BALR RO, O

USI NG *, RO

While this MIGHT assemble correctly (1 have no idea), it ismost certainly avery bad idea.
Any call to a system procedure will disrupt the addressing.

Options: No Base Register vs. The Default Base Register

So far, we have considered only the object code form of atypical address. We now “jump
ahead” abit and look at two typical instructions that use this address type.

Onetype of instruction, called “RS’, used for register—to-storage instructions.

Such an instruction has source code of the form OP R1,R3,D2(B2).

Such an instruction has object code of the form OP R;R3 B;D; D2Ds.

Welook at LM, an interesting example of thisformat.

LM R1,R3,S2 loads multiple registers in the range R1 — R3 from the memory
location specified by S2, the address of which will beintheform | B, | D, D, D> |.

We now interpret the following code fragment.

BALR R12, O Establish register R12 (X C)
USI NG *, R12 as the default base resister.
LM R5, R7, S2 m ght have object code 98 57 C1 00.

This uses the default base register.
LM R9, R11, S3(R3) Use R3 as an explicit base register.
m ght have object code 98 9B 31 40.

Object code such as 98 9B OE 00 would call for use of an absolute address, not
computed from a base register. For thisexample, it islikely to be bad code.

Rationalefor Base Register Addressing

There are two advantages of base/displacement addressing. Onereason is till valid and one
shows an interesting history. Remember that the System/370 of the time admitted a 24-bit
address space, with addresses ranging from 0 through 2%*~1 or 0 through 16,777,215.

Page 151 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

A full 24-bit address would require 24 bits, or six hexadecimal digits, or three bytes.
The base register/displacement method of addressing allocates
4 bitsto the base register
12 hits to the displacement

In this method, an address requires 16 bits, or two bytes. Theinstruction length is reduced
because each address requires only two bytes rather than three.

One might infer that some of the System/360 and System/370 installations had very little
memory. Indeed, some of the early $/360 systems shipped with only 128 KB of memory.

Base Register/Displacement Addressing: Relocating the Code
The second major advantage of base/displacement addressing still applies today.

The system facilitates program relocatability. Instead of assigning specific fixed storage
addresses, the assembler determines each address relative to abase address. At execute
time (after the program is loaded), the base address, which may be anywhere in storage, is
loaded into a base register.”

The standard prefix code

BALR 12, O
USI NG *, 12

may be translated as follows:
1. What ismy address?
2. Load that addressinto register 12 and use it as an base address in that register.

The other option for relocating code isto use arelocating loader to adjust fixed
address references to reflect the starting address of the code. Thisis aso acceptable.

In the 1960’ s, code that did not reference absol ute addresses was thought to be superior.
Such code was called “ position independent code”.

Base/Displacement vs. Indexed Addressing

Note the similarities with indexed addressing, in which the base is given by avariable and
the offset is given by aregister. Systems that use the register contents as a base do so
because the registers can store larger numbers than the bits in the machine code.

For example, the System/360 allocates only 12 bits for the displacement, which is combined
with the contents of aregister, which can be a 32-bit number. The MIPS-32, adesign from
the mid 1980's, also uses base/displacement addressing rather than indexed addressing.

In the MIPS-32 architecture, the displacement is a 16-bit signed integer, and the register
values are 32-bit numbers. Thisis basically the same idea, except that the displacement can
be a negative number. The range for the MIPS-32 is—-32,768 through 32,767 inclusive.

Page 152 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Addressing: More Discussion
Here are some more examples of addressing using an index register and a base register.

All of these examples are taken from type RX instructions, which use indexing.

Each of theseis afour-byte instruction of the form OP R1,D2(X2,B2). The format
of the object codeis OP R1X, B,D, D,D,. Each byte contains two hexadecimal digits.

We interpret the 32-bit object code as follows.
OP Thisis an eight-bit operation code.
R1X> This byte contains two hexadecimal digits, each of which is significant.
R, denotes aregister as the source or destination of the operation.
X, denotes a general—purpose register to be used as an index register.
B,D, D,D, This contains the argument address as a base register and displacement.

Remember that the displacement, given by three hexadecimal digits, istreated asa
12-bit unsigned integer. In decimal, the limit is 0 < Displacement < 4095.

The genera form by which an addressis computed is
Contents (Base Register) + Contents (Index Register) + Displacement.

Some instructions do not use index register addressing.
Addressing: Example 1
Here is some object code for analysis.

5840C123

Thefirst thing to note is that the opcode, 58, isthat for L, aRegister Load. Thisisatype RX
instruction with object code of the form OP R1X; B2D, D2Ds.

As noted above, OP = 58.
We seethat Ry = 4. Itisregister 4 that is being loaded from memory.
We seethat X, = 0. Indexed addressing is not used.

We also note that B,D, D,D, = C1 23, indicating an offset of X‘123’, or decima 291, from
the address value stored in general—purpose register 12 (hexadecimal C).

Suppose that the value in genera—purpose register 12 is X' 2500'. The effective
address for thisinstruction is then X*2500" + X' 123" = X*'2623'.

Page 153 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Addressing: Example 2
Here is another example of object code.
58 A7B125

Thefirst thing to note is that the opcode, 58, isthat for L, aRegister Load. This
isatype RX instruction with object code of the form OP R1X; B,D, D,D».

As noted above, OP = 58.

The hexadecimal digit for the register is A, indicating that register 10 is being |oaded.
Recall that all of the digitsin the object code are given in hexadecimal.

We seethat X, = 7, indicating that general—purpose register 7 is being used as an
index register.

We also note that BoD, D,D, = B1 25, indicating an offset of X' 125’ from the
address value stored in general—purpose register 11 (hexadecimal B).

Suppose the following: Register 11 contains X' 0012 4000’
Thedisplacementis X' 0000 0125’
Register 7 contains X' 0000 0300’
The address is thus X 0012 4425

An Aside: When Is1t NOT An Address?
Let’slook at the standard form used for abase & displacement address.

|B|DDD |

Technically, the 12—bit unsigned integer indicated by D D D is added to the contents of the
register indicated by B, and the results used as an address. There are instructions in which
the value so computed is just used as avalue and not as an address. Consider the instruction
SLL R4,1, whichisaShift Left instruction. It isassembled as shown below.

000018 8940 0001 00001 48 SLL R41
The base register is 0, indicating that no base register isused. The “offset” is 1.
The value by which to shift is given as the sum, which is 1.

We could use a standard register to hold the value of the shift count, asin the following,
which uses R8 to hold the shift count.

000018 8940 8000 00001 48 SLL R4,0(R8)

NOTE: Thisisagood example of not using a “base register” in order to generate
an “absolute constant”, not relative to any address. Here, the value is a count.

Assigning and loading base registers.

If the program is to use a base register for base register/displacement addressing, that register
must be specified and provided with an initial value.

Page 154 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Again, the standard prefix code handles this.

BALR 12, O
USI NG *, 12

If register 12 is used as a base register, it cannot be used for any other purpose.
In other words, your code should not reference register 12 explicitly.

We have two standards suggested for a base register. The textbook uses register 3
and one of our examples uses register 12. Pick one and use it consistently.

The Standard OS Prefix Code
Just to be complete, we show typical prefix code for running under OS.

Thisistaken from our lab 1.
LAB1 CSECT COMMA REQUI RED | F COMMENT ON THI S STMI

kkhkkkhkhkkhkkhhkhhkkhhhhkhkhkhkhkhkhhkhhkhhhhhkhkhkhhkhhkhhkhhhhkhhkkhkhhkhhkhkhkihkikkikkhkikhkkkx*
* STANDARD LI NKAGE FOR A REUSABLE OS/ WS CSECT

* TH'S USES REG STER 12 AS A BASE REG STER TH S ASSUMES THAT
* THE SYMBOL R12 HAS BEEN DEFI NED AS 12 I N A PRECEEDI NG EQU.

R R b S I S S S Sk R R R ek R Sk I I kR b S S b O

SAVE (14, 12) SAVE CALLER S REGS

BALR R12,0 ESTABLI SH

USI NG *, R12 ADDRESSABI LI TY

LA R2, SAVEAREA PO NT TO MY LONER- LEVEL SA

ST R2, 8(, R13) FORWARD- CHAIN M NE FROM CALLER S
ST R13, SAVEAREA+4 BACK- CHAIN CALLER S FROM M NE

LR R13, R2 SET 13 FOR MY SUBROUTI NE CALLS

Rk I b b S S O R O O BEGN me E R R S S b S S R S S b O

Relative Addressing

Aswe have seen, al symbolic addresses are based on variants of the concept of base address
(stored in abase register) and an offset. Note that the offset, encoded as a 12-bit unsigned
integer, is always non—negative. The possible offset values range from 0 through 4095.

We now introduce away to reference a storage position relative to the symbolic address of
another label. This allows direct reference to unlabeled storage.

Theform of arelative addressis LABEL +N, where N is the byte offset of the desired
storage relative to the symbolic address associated with LABEL . Again, note the lack of
spacesin the relative address. Thisisimportant.

Consider the two data declarations.
F1 DCFO0O A four-bytefull-word.
F2 DCF'2 Another full-word at addressF1 + 4
Consider the following two instructions. They areidentical.
L R6,F2
L R6, F1+4

Page 155 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Relative Addressing: A More Common Use

The most common use of relative addressing is to access an unlabel ed section of a multi-byte
storage area associated with a symbolic address. Consider the following very common
declaration for card data. It sets aside a storage of 80 bytes to receive the 80 characters
associated with standard card input.

CARDIN DSCL80

While only the first byte (at offset 0 from CARDIN) is directly named, we may use relative
addressing to access any byte directly. Consider thisfigure.

80 bytes
s T
CARDIN CARDIN+79
CARDINH1 CARDIN+78
CARDIN+2

The second byte of input it is at address CARDIN+1, thethird at CARDIN+2, etc.

Remember that the byte at address CARDIN+N isthe character in column (N + 1) of the
card. Punched cards do not have a column 0, so valid addressesin this case range from
CARDI N through (CARDI N + 79).

Digression: Labelsand Addresses

While we use labels to indicate addresses, we must recall that no label has an explicit data
type associated with it when the program isrun. Each definition servesonly to set aside
memory. The actual datatype is associated with the assembly language operation.

Consider the following declarations and assume that the addresses are sequential. 1n these
examples, each is defined as hexadecimal, so that we can more easily see the problem.

FWL DC X' 1234 ABCD
HAL DC X' 8888’ AT ADDRESS F1+4
H\2 DC X 7777 AT ADDRESS F1+6

The fullword at address FWL hasvalue X' 1234 ABCD .
The halfword at address F\WL hasvalue X' 1234’ .

The halfword at address FWL+2 has value X ABCD' .
The halfword at address H\M hasvalue X' 8888’ .

The halfword at address HW2 hasvalue X' 7777’ .

The fullword at address HWL hasvalue X' 8888 7777’ .

Again, note that it does not matter that FWL was intended to be a fullword or that each of
HWL. and HW2 to be a halfword. It isthe instruction that matters.

Page 156 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Explicit Base Addressing for Character I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 271 — 273].

Assume that general—purpose register 4 is being used as the base register, as assigned at
the beginning of the CSECT. Assume also that the following statements hold.

1. Generd purposeregister 4 contains thevalue X' 8002’ .

2. Thelabel PRI NT represents an address represented in base/offset form as 401A; that
isitisat offset X 01A’" from the value stored in the base register, which is R4.
The addressthenis X' 8002’ + X' 01A’ =X 801C .

3. Given that the decimal number 60 is represented in hexadecimal as X' 3C'
the address PRI NT+60 must then be at offset X* 01A" + X' 3C =X' 56’ from
the addressin the baseregister. X' A' + X' C ,indecimal,is10+ 12=16+ 6.

Note that this gives the address of PRI NT+60 as X' 8002’ + X' 056’ = X' 8058’
whichisthesameas X' 801C' + X' 03C'. Thesum X' C + X' C' ,indecimdl, is
represented as 12 + 12 =24 =16 + 8.

4. Thelabel ASTERS is associated with an offset of X' 09F' from the valuein the
base register; thusit islocated at address X' 80A1’ . Thislabel references a storage
of two asterisks. Asadecimal value, the offset is 159.

5. That only two characters are to be moved by the MV C instruction examples to be
discussed. Since the length of the move destination is greater than 2, and since the
length of the destination is the default for the number of charactersto be moved, this
implies that the number of characters to be moved must be stated explicitly.

Thefirst example to be considered has the simplest appearance. It is asfollows:
MVC PRI NT+60(2) , ASTERS

The operands here are of theform Dest i nati on(Lengt h), Sour ce.
The destination is the address PRI NT+60. The length (number of characters
to move) is2. Thiswill be encoded in the length byteas X* 01’ , asthe length
byte stores one less than the length. The source is the address ASTERS.

Asthe MV C instruction is encoded with opcode X* D2’ , the object code hereis as follows:

Type | Bytes Operands 1 2 3 4 5 6
SS(1) 6 D1(L,B1),D2(B2) OP L [B;D,| DD, | B,D, | D:D,
D2 01 40 56 40 9F

The next few examples are given to remind the reader of other ways to encode
what is essentially the same instruction.

Page 157 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

These examples are based on the true nature of the source code for a MVC instruction, which
ismwC Di(L, B1), D2(B2). Inthisformat, we have the following.

1. Thedestination addressis given by displacement D1 from the address stored in
the base register indicated by B1.

2. The number of charactersto moveis denoted by L.

3. Thesource addressis given by displacement D2 from the address stored in
the base register indicated by B2.

The second example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT+60 GET ADDRESS PRI NT+60 | NTO R8
MVC 0(2, 8), ASTERS MOVE THE CHARACTERS

Note the structure in the destination part of the source code, whichis0(2, 8) .

0(2,8)
Displac Ement T tB ase
Length
The displacement is 0 from the address X* 8058’ , which isstored in R8. The object codeis:
Type | Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | D:D,
D2 01 80 00 40 9F

The instruction could have been written as MWC 0(2, 8), 159(4) , asthelabel
ASTERS isfound at offset 159 (decimal) from the addressin register 4.

The third example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT GET ADDRESS PRI NT | NTO R8
MVC 60(2, 8), ASTERS SPECI FY A DI SPLACEMENT

Note the structure in the destination part of the source code, whichis60(2, 8) .

60(2,8)

+.

Displacement TtBase

Length
The displacement is 60 from the address X' 801C' , stored in R8. The object codeis:
Type Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | DD,

D2 01 80 3C 40 9F

Theinstruction could have been written asWC 60(2, 8), 159(4) , asthe label
ASTERS Iisfound at offset 159 (decimal) from the addressin register 4.

Page 158 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

Explicit Base Addressing for Packed Decimal I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 273 & 274].

Consider the following source code, taken from Abel. Thisisbased on aconversion of a
weight expressed in kilogramsto its equivalent in pounds; assuming 1kg. = 2.2 Ib. Physics
students will please ignore the fact that the kilogram measures mass and not weight.

ZAP POUNDS, KGS MOVE KGS TO POUNDS

MP POUNDS, FACTOR MJLTI PLY BY THE FACTOR
SRP POUNDS, 63, 5 ROUND TO ONE DECI MAL PLACE

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS5+3
PCUNDS DS PLS5 LENGTH 5 BYTES, AT ADDRESS KGS+5

The value produced is 12.53¢2.2 = 27.566, which is rounded to 27.57.

The instructions we want to examine in some detail are the MP and ZAP, each of which
isatype SSinstruction with source code format OP D1(L1, B1), D2(L2, B2) . Each of
the two operands in these instructions has a length specifier.

In the first example of the use of explicit base registers, we assign a base register to
represent the address of each of the arguments. The above code becomes the following:

LA R6, KGS ADDRESS OF LABEL KGS
LA R7, FACTOR ADDRESS
LA R8, POUNDS

ZAP 0(5, 8), 0(3, 6)
MP 0(5,8),0(2,7)
SRP 0(5, 8), 63,5

Each of the arguments in the MP and ZAP have the following form:

0{5,8) 0(3,6) 02,7}
DﬂsetTtBase DHSJ;TLBE[SE DHSETIZTLB&SE
Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 0(5,8),0(3,6) Destination is at offset 0 fromthe address
stored in R8. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R6. The source has length 3 bytes.

MP 0(5,8),0(2,7) Destination is at offset 0 fromthe address
stored in R8. The destination has |length 5 bytes.

Source is at offset O fromthe address stored
in R7. The source has length 2 bytes.

Page 159 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Addressing

But recall the order in which the labels are declared. The implicit assumption that the labels
are in consecutive memory locations will here be made explicit.

KGS DC PL3'12.53 LENGTH 3 BYTES
FACTOR DC PL2'2. 2 LENGTH 2 BYTES, AT ADDRESSS KGS+3
PCUNDS DS PLS5 LENGTH 5 BYTES, AT ADDRESS KGS+5

In this version of the code, we use the label KGS as the base address and reference all other
addresses by displacement from that one. Hereisthe code.

LA R6, KGS ADDRESS OF LABEL KGS

ZAP 5(5,6),0(3, 6)

MP 5(5,6), 3(2,6)

SRP 5(5,6), 63,5

Each of the arguments in the MP and ZAP have the following form:

5(5,6) 0{3,6) 3(2,6)

+ + +
fosetTtBase fosetTtBase fosetTtBase

Length Length Length

Recall the definitions of the three labels, seen just above. We analyze the instructions.

ZAP 5(5,6),0(3,6) Destination is at offset 5 fromthe address
stored in R6. The destination has Iength 5 bytes.

Source is at offset 0 fromthe address stored
in R6. The source has |ength 3 bytes.

MP 5(5,6),3(2,6) Destination is at offset 5 fromthe address
stored in R6. The destination has |length 5 bytes.

Source is at offset 3 fromthe address stored
in R6. The source has length 2 bytes.

In other words, the base/displacement 6000 refersto a displacement of O from the address
stored in register 6, which is being used as an explicit base register for this operation. As
the addressin R6 isthat of KGS, this value represents the address KGS. Thisis the object
code address generated in response to the source code fragment 0(3, 6) .

The base/displacement 6003 refers to a displacement of 3 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+3, which is the address FACTOR. Thisis
the object code address generated in response to the source code fragment 3(2, 6) .

The base/displacement 6005 refers to a displacement of 5 from the address stored in register
6, which is being used as an explicit base register for this operation. Asthe addressin R6is
that of KGS, this value represents the address KGS+5, which is the address POUNDS. Thisis
the object code address generated in response to the source code fragment 5(5, 6) .

It isworth notice, even at this point, that the use of asingle register as the base from which to
reference a block of data declarations is quite suggestive of what is done with a DSECT, aso
called a“Dummy Section”.

Page 160 Chapter 8 Revised June 27, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

