
Page 177 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Chapter 10: Handling Character Data

Processing Character Data
We now discuss the definitions and uses of character data in an IBM Mainframe computer.
By extension, we shall also be discussing zoned decimal data. Character data and zoned
decimal data are stored as eight–bit bytes. These eight–bit bytes are seen by IBM as being
organized into two parts. This division is shown in the following table.

Portion Zone Numeric

Bit 0 1 2 3 4 5 6 7

There are two things to note about this table. The first is the bit numbering scheme used by
IBM, in which the leftmost bit in an item is always bit 0. IBM seems to be unique in this bit
numbering scheme; almost all others label the rightmost bit as bit 0.

One might wonder about the nomenclature “zone” and “numeric”. In order to understand
why these names are given, we must recall the format of an IBM 026 punch card. The point
here is that the EBCDIC (Extended Binary Coded Decimal Interchange Code) encoding was
designed for compatibility with the IBM 029 punch card codes which evolved from the IBM
026 punch card code illustrated below.

Note the structure of the column punches for the alphabetic character set. Each letter is
represented by a punch in either column 11 or 12 (the zone punch) and a punch in one of the
columns numbered 0 through 9 (the numeric punch). While the digits are represented by a
single punch, the requirement to have a full–byte representation in the character code has
lead to their being assigned a zone code as well.

As noted in a previous chapter, the EBCDIC coding scheme was designed with the specific
goal of easy translation from IBM 029 punched card codes, with the names “zone” and
“numeric” being retained from those days. Why not keep a bit of history?

S/370 Assembler Language Character Data

Page 178 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The EBCDIC Character Set
Here is the set of important EBCDIC codes.

Character Punch Code EBCDIC
‘0’ 0 F0
‘1’ 1 F1
‘9’ 9 F9
‘A’ 12 – 1 C1
‘B’ 12 – 2 C2
‘I’ 12 – 9 C9
‘J’ 11 – 1 D1
‘K’ 11 – 2 D2
‘R’ 11 – 9 D9
‘S’ 0 – 2 E2
‘T’ 0 – 8 E3
‘Z’ 0 – 9 E9

Note that the EBCDIC codes for the digits ‘0’ through ‘9’ are exactly the zoned decimal
representation of those digits. (But see below).

The DS declarative is used to reserve storage for character data, while the DC declarative is
used to reserve initialized storage for character data. There are constraints on character
declarations, which apply to both the DS and DC declaratives.

1. Their length may be defined from 1 to 256 characters.
As a practical matter, long character constants should be avoided.

2. They may contain any character. Characters not available in the standard
set may be introduced by hexadecimal definitions.

3. The length may be defined either explicitly or implicitly.
It is usually a good idea not to do both, as this can lead to mistakes.

Consider the case in which a DC declarative is used to define a character constant. If the
length attribute is specified, it overrides the length implied by the constant itself. Remember
that the length is really a byte count, which is the same as a character count. The following
examples will illustrate the issues of both explicit and implicit length definitions.

MONTH1 DC CL6‘SEPTEMBER’ STORED AS ‘SEPTEM’

MONTH2 DC CL6‘MAY’ STORED AS ‘MAY ’

MONTH3 DC CL6‘AUGUST’ STORED AS ‘AUGUST’

In the first case, the explicit length is less than the actual length of the constant, so that the
value stored is truncated after the explicit length is stored. The rightmost characters are lost.

In the second case, the explicit length is greater than the actual length of the constant. The
value stored is padded with blanks out to the specified explicit length; here 3 are added.

It should be obvious that nothing special happens when the explicit length is exactly the same
as the length of the constant. There may be reasons to do this, possibly for documentation.

S/370 Assembler Language Character Data

Page 179 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Defining Character Strings
While the term “string” is not exactly appropriate in this context, we need some way to speak
of a sequence of characters such as defined above. In the IBM parlance, the sequence
defined by the declarative DC CL6‘AUGUST’ is viewed as character data. Strictly
speaking, this is a sequence of six characters.

We shall speak of general string handling in a later chapter. The issue at this point is how the
assembler determines the length of the string when executing an instruction such as MVC.
The answer is that each such instruction specifically encodes the length of the string to be
processed. Again, it is the instruction that really defines the length and not the declaration.

Examination of the object code for these character instructions will show that the length is
stored in modified form as an 8–bit unsigned integer. Actually, the length is decremented by
one before it is stored. The range of an 8–bit unsigned integer is 0 through 255 inclusive, so
that the length that can be stored ranges from 1 through 256. There seems to be no provision
for zero length sequences of characters. Zero length strings will be discussed in a later
chapter in which the entire idea of a string will be fully developed.

First, let’s recall one major difference between the DS and DC declaratives. The DS may
appear to initialize storage, but it does not. Only the DC initializes storage. The difference is
illustrated by considering the following two declarations.

V1 DS CL4‘0000’ Define four bytes of uninitialized
storage. The ‘0000’ is just a comment.
The four bytes allocated will have some
value, but that is unpredictable.

V2 DC CL4‘0000’ Define four bytes of storage, initialized
to the four bytes F0 F0 F0 F0, which
represent the four characters.

One should use the DS declaration only for fields that will be initialized by some other
means, such as the MVC instruction that is discussed below. It is always possible to move
values into an area of memory initialized with a DC declarative. In the above example, it is
possible to move the character constant ‘2222’ to V2, which would then contain that value.

The student should also note that it is very easy to write the above declarations in a form that
might cause assembly errors. Consider the following two declarations.

V3 DS CL4 ‘0000’ Define four bytes of uninitialized
storage. Note the blank after ‘CL4’.
Since everything after the ‘CL4’ is a
comment, this does not cause a problem.

V4 DC CL4 ‘0000’ This causes an assembly error. The DC
declarative exists to initialize the
storage area, but the blank after the
‘CL4’ introduces a comment. The ‘0000’
is not recognized as a value.

Note that no declaration above actually defines a number, but just a sequence of characters
that happen to be digits.

S/370 Assembler Language Character Data

Page 180 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Explicit Base Addressing for Character Instructions
We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 271 – 273].

Assume that general–purpose register 4 is being used as the base register, as assigned at
the beginning of the CSECT. Assume also that the following statements hold.

1. General purpose register 4 contains the value X‘8002’.

2. The label PRINT represents an address represented in base/offset form as 401A; that
is it is at offset X‘01A’ from the value stored in the base register, which is R4.
The address then is X‘8002’ + X‘01A’ = X‘801C’.

3. Given that the decimal number 60 is represented in hexadecimal as X‘3C’,
the address PRINT+60 must then be at offset X‘01A’ + X‘3C’ = X‘56’ from
the address in the base register. X‘A’ + X‘C’, in decimal, is 10 + 12 = 16 + 6.

Note that this gives the address of PRINT+60 as X‘8002’ + X‘056’ = X‘8058’,
which is the same as X‘801C’ + X‘03C’. The sum X‘C’ + X‘C’, in decimal, is
represented as 12 + 12 = 24 = 16 + 8.

4. The label ASTERS is associated with an offset of X‘09F’ from the value in the
base register; thus it is located at address X‘80A1’. This label references a storage
of two asterisks. As a decimal value, the offset is 159.

5. That only two characters are to be moved by the MVC instruction examples to be
discussed. Since the length of the move destination is greater than 2, and since the
length of the destination is the default for the number of characters to be moved, this
implies that the number of characters to be moved must be stated explicitly.

The first example to be considered has the simplest appearance. It is as follows:

MVC PRINT+60(2),ASTERS

The operands here are of the form Destination(Length),Source.
The destination is the address PRINT+60. The length (number of characters
to move) is 2. This will be encoded in the length byte as X‘01’, as the length
byte stores one less than the length. The source is the address ASTERS.

As the MVC instruction is encoded with opcode X‘D2’, the object code here is as follows:

Type Bytes Operands 1 2 3 4 5 6

SS(1) 6 D1(L,B1),D2(B2) OP L B1 D1 D1D1 B2 D2 D2D2

D2 01 40 56 40 9F

The next few examples are given to remind the reader of other ways to encode
what is essentially the same instruction.

S/370 Assembler Language Character Data

Page 181 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

These examples are based on the true nature of the source code for a MVC instruction, which
is MVC D1(L,B1),D2(B2). In this format, we have the following.

1. The destination address is given by displacement D1 from the address stored in
the base register indicated by B1.

2. The number of characters to move is denoted by L.

3. The source address is given by displacement D2 from the address stored in
the base register indicated by B2.

The second example uses an explicit base and displacement representation of the destination
address, with general–purpose register 8 serving as the explicit base register.

LA R8,PRINT+60 GET ADDRESS PRINT+60 INTO R8
MVC 0(2,8),ASTERS MOVE THE CHARACTERS

Note the structure in the destination part of the source code, which is 0(2,8).

The displacement is 0 from the address X‘8058’, which is stored in R8. The object code is:

Type Bytes Operands 1 2 3 4 5 6

SS(1) 6 D1(L,B1),D2(B2) OP L B1 D1 D1D1 B2 D2 D2D2

D2 01 80 00 40 9F

The instruction could have been written as MVC 0(2,8),159(4), as the label
ASTERS is found at offset 159 (decimal) from the address in register 4.

The third example uses an explicit base and displacement representation of the destination
address, with general–purpose register 8 serving as the explicit base register.

LA R8,PRINT GET ADDRESS PRINT INTO R8
MVC 60(2,8),ASTERS SPECIFY A DISPLACEMENT

Note the structure in the destination part of the source code, which is 60(2,8).

The displacement is 60 from the address X‘801C’, stored in R8. The object code is:

Type Bytes Operands 1 2 3 4 5 6

SS(1) 6 D1(L,B1),D2(B2) OP L B1 D1 D1D1 B2 D2 D2D2

D2 01 80 3C 40 9F

The instruction could have been written as MVC 60(2,8),159(4), as the label
ASTERS is found at offset 159 (decimal) from the address in register 4.

S/370 Assembler Language Character Data

Page 182 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Sample Declarations
We now give a few examples of declarations of character constants. These examples will
appear in the form of an assembler listing. Each line will have four parts: a location, the
object code (EBCDIC characters) that would be generated, the declaration itself, and then
some comments in the field that the assembler would reserve for comments.

LOC Obj. Code Source Code Comments

005200 40404040 B1 DC CL4‘ ’ FOUR BLANKS

005204 40404040 B2 DC 4CL1‘ ’ FOUR SINGLE BLANKS. NOTE
THE IDENTICAL OBJECT CODE.

005208 F0F0F0F0 Z1 DC C‘0000’ FOUR DIGITS

00520C F2F2F2F2 N2 DC 4CL1‘2’ FOUR MORE DIGITS

The MVC Instruction
The MVC (Move Character) instruction is designed to move character data, but it can be
used to move data in any format, one byte at a time. As we shall see later, the MVC can be
used to move packed decimal data, but this is not advised as strange errors can occur.

The MCV instruction is a storage–to–storage (type SS) instruction. The opcode is X‘D2’.

The instruction may be written as MVC DESTINATION,SOURCE

An example of the instruction is MVC F1,F2

The format of the instruction is MVC D1(L,B1),D2(B2). This format reflects
the fact that each of the source and destination addresses is specified by a base register (often
the default base register) and a displacement. Here is the format of the object code.

Type Bytes Form 1 2 3 4 5 6

SS(1) 6 D1(L,B1),D2(B2) X‘D2’ L B1 D1 D1D1 B2 D2 D2D2

Here are a few comments on MVC.

1. It may move from 1 to 256 bytes, determined by the use of an 8–bit number
as a length field in the machine language instruction.

The destination length is first decremented by 1 and then stored in the length byte,
which can store an unsigned integer representing values between 0 and 255.
This disallows a length of 0, and allows 8 bits to store the value 256.

2. Data beginning in the byte specified by the source operand are moved one
byte at a time to the field beginning with the byte in the destination operand.

One of the reasons for complexity of the implementation is that the source
and destination regions may overlap.

3. The length of the destination field determines the number of bytes moved.

S/370 Assembler Language Character Data

Page 183 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Example of the MVC Instruction
Consider the example assembly language statement, which moves the string of
characters at label CONAME to the location associated with the label TITLE.

MVC TITLE,CONAME

Suppose that: 1. There are fourteen bytes associated with TITLE, say that it was
declared as TITLE DS CL14. Decimal 14 is hexadecimal E.

2. The label TITLE is referenced by displacement X‘40A’
from the value stored in register R3, used as a base register.

3. The label CONAME is referenced by displacement X‘42C’
from the value stored in register R3, used as a base register.

Given that the operation code for MVC is X‘D2’, the instruction assembles as
D2 0D 34 0A 34 2C Length is 14 or X‘0E’; L – 1 is X‘0D’

To be totally obvious with this example, let us disassemble the object code that we have just
created by manual assembly. The only assumption at the start is that the byte with value
X‘D2’ contains the opcode for the instruction. Here again is the object code format.

Type Bytes Form 1 2 3 4 5 6

SS(1) 6 D1(L,B1),D2(B2) X‘D2’ L B1 D1 D1D1 B2 D2 D2D2

The opcode X‘D2’ is that for the MVC instruction (surprise!). This is a type SS instruction
which has a total of six bytes: the opcode byte and five bytes following.

The second byte contains the length field. Its value is X‘0D’, representing the decimal
value 13. This is one less than the length of the destination field, which must have length 14.

Bytes 3 and 4 represents an address, expressed in base/displacement format, as do bytes
5 and 6. The value in bytes 3 and 4 is a 16–bit number, in hexadecimal it is X‘340A’.
This indicates that general purpose register 3 is being used as the base for this address and
that the offset is given by X‘40A’. Suppose that register 3 contains the value X‘1700’.
The address represented would then be X‘1700’ + X‘40A = X‘1B0A’.

MVC: Explicit Register Usage
The instruction may be written explicitly in the form MVC D1(L,B1),D2(B2)

Consider the following example: MVC 32(5,7),NAME. In this example, suppose that
general–purpose register 7 has the value X‘22400’. We note that the label NAME
represents an address that will be converted to the form D2(B2); that is, a displacement
from a base register. This base register might be register 7 or any of the ten registers (R3 –
R12) available for general use.

We examine the specification of the first argument, which is the destination address.
It is of the form D1(L,B1). The length is L = 5. This indicates that five characters are to
be moved. The displacement is decimal 32, or X‘20’.

S/370 Assembler Language Character Data

Page 184 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

The address of the first character in the destination is given by adding this displacement
to the contents of the base register: X‘22400’ + X‘20’ = X‘22420’. Five characters are
moved to the destination. The fifth character is moved to a location that is four bytes
displaced from the first character; its address is X‘22424’.

Suppose that the label NAME corresponds to an address given by offset X‘250’(592 in
decimal) from general–purpose register 10 (denoted in object code by X‘A’).

When the instruction is written in the form MVC D1(L,B1),D2(B2), we see that it has
the form MVC 32(5,7),592(10). ALL NUMBERS ARE DECIMAL.

In the object code format, the value stored for the length attribute is one less than
the actual length. The length is 5, so the stored value is 4, or X‘04’.

The object code format is D2 04 70 20 A2 50.

Again, recall the object code format for this instruction.

Op Code Length Base Displacement Base Displacement

D 2 0 4 7 0 2 0 A 2 5 0

MVC: Example of Length Mismatch
The number of bytes (characters) to move may be explicitly stated in the source statement.
However if it is not explicitly stated, the number is taken as the length (in bytes or characters)
of the destination field. Consider the following program fragment.

MVC F1,F2

F1 DC CL4‘JUNE’

F2 DC CL5‘APRIL’

What happens is shown in the next figure.

The assembler recognizes F1 as a four–byte field from its declaration by the DC
statement. This implicitly sets the number of characters to be moved. The character ‘L’ is
not moved, as it is the fifth character in F2. It is at address F2+4.

MVC: Another Example of Length Mismatch
The number of bytes (characters) to move may be explicitly stated in the source code. While
the explicit length may exceed that of the destination field, your instructor (but not many
textbook authors) considers that bad programming practice.

S/370 Assembler Language Character Data

Page 185 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Consider the following program fragment, in which an explicit length of 3 is set. Recall the
form of the instruction: MVC D1(L,B1),D2(B2).

MVC F1(3),F2 The (3) says move three characters

F1 DC CL4‘JUNE’

F2 DC CL5‘APRIL’

What happens is shown in the next figure.

Note that only “APR” is moved. The last character of F1, which is an “E”, is not changed.
This last character is at address F1+3.

MVC: Example 3
We may use relative addressing as well as an explicit length declaration. Consider the
following program fragment.

MVC F1+1(2),F2+2

F1 DC CL4‘JUNE’

F2 DC CL5‘APRIL’

This calls for moving two characters from address F2+2 to address F1+1. The two
characters at address F2+2 are “RI”. The two characters at the destination address F1+1
are “UN”. What happens is shown in the next figure.

The other two characters in F1, at addresses F1 and F1+3, are not changed.

S/370 Assembler Language Character Data

Page 186 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

MVC: Example 4
We now consider the explicit use of base registers.

Recall the form of the instruction: MVC D1(L,B1),D2(B2).

In the following three examples, we suppose that PRINT is a label associated with
an output field of length 80 bytes. In reality, it only must be “big enough”.

FRAG01 MVC PRINT+60(2),=C‘**’

FRAG02 LA R8,PRINT+60 LOAD THE ADDRESS.

MVC 0(2,8),=C‘**’ DEST ADDRESS IS PRINT+60

FRAG03 LA R8,PRINT LOAD THE ADDRESS.

MVC 60(2,8),=C‘**’ NOTE OFFSET IS 60

Suppose that the address of PRINT is given by base register 12 and displacement X‘200’.
Suppose register 12 contains a value of X‘1000’. The label PRINT references address
X‘1200’. The value of PRINT+60 is then X‘1200’ + X‘60’ = X‘1260’.

As an aside, note that it appears more natural to write the first instruction in the form.

FRAG01 MVC PRINT+60(2), =C‘**’

Note that there is a space following the comma. This space turns whatever fallows it into a
comment, thus rendering the instruction incomplete and erroneous.

Describing Input Fields
Consider the following block that declares area for an 80–column input (corresponding to an
80–column punch card) that is divided into fields.

Here is a declaration of an 80–byte input area that will be divided into fields.

CARDIN DS 0CL80 The record has 80 bytes.
NAME DS CL30 The first field has the name.
YEAR DS CL10 The second field.
DOB DS CL8 The third field.
GPA DS CL3 The fourth field.

DS CL29 The last 29 chars are not used.

The address corresponding to the label NAME is the same as that for the label CARDIN. The
field NAME corresponds to addresses NAME through NAME+29, inclusive.

The address corresponding to the label YEAR is the same as the address CARDIN+30. The
field YEAR corresponds to addresses YEAR through YEAR+9, inclusive. Equivalently, the
field corresponds to addresses CARDIN+30 through CARDIN+39, inclusive.

Relative addressing will often be used to extract fields from an input record or place fields
into an output record.

S/370 Assembler Language Character Data

Page 187 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Character Comparison: CLC
The CLC (Compare Logical Character) instruction is one of the two used to compare
character fields, one byte at a time, left to right.

Comparison is based on the binary contents (EBCDIC code) contents of the bytes.
The sort order is from X’00’ through X’FF’.

The instruction may be written as CLC Operand1,Operand2

The format of the instruction is CLC D1(L,B1),D2(B2)

An example of the instruction is CLC NAME1,NAME2

This instruction sets the condition code that is used by the conditional branch instructions.
The condition code is set as follows:

If Operand1 is equal Operand2 Condition Code = 0

If Operand1 is lower than Operand2 Condition Code = 1

If Operand1 is higher than Operand2 Condition Code = 2

The operation moves, byte by byte, from left to right and terminates as soon as an unequal
comparison is found or one of the operands runs out.

Using the Condition Codes
The character comparison operators, CLC and CLI, set the condition codes. These codes are
used by the branching instructions in their non–numeric form. Here are the standard
comparisons.

BE Branch Equal Condition Code = 0

BNE Branch Not Equal Condition Code  0

BL Branch Low Condition Code = 1

BNL Branch Not Low Condition Code  1

BH Branch High Condition Code = 2

BNH Branch Not High Condition Code  2.

Here are two equivalent examples.

CLC X,Y

BL J20LOEQ X sorts less than Y

BE J20LOEQ Y is equal to Y

CLC X,Y

BNH J20LOEQ X does not sort higher than Y

S/370 Assembler Language Character Data

Page 188 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

CLC: An Example
Consider the following code fragment. Note that the comparison value is given
as the seven EBCDIC characters ‘0200000’.

Presumably, this would be converted into seven Packed Decimal digits and held to
represent the fixed point number 2000.00, presumably $2,000.00.

C20 CLC SALPR,=C‘0200000’ COMPARE TO 2,000.00

BNH C30 NOT ABOVE 2,000.00

BL C40 LESS THAN 2,000.00

* EQUAL TO 2,000.00

Again, this is presented as representing Packed Decimal data, which it probably
does represent. The comparison, however, is an EBCDIC character comparison.

Here is another example, built around the first one. It represents an important
special case that we shall consider when discussing Packed Decimal format.

C20 CLC SALPR,=C‘ ’ IS THE FIELD BLANK?

BNE NOTBLNK

MVC SALPR,=C‘0000000’ CONVERT BLANKS TO 0’S

NOTBLANK PACK SALNUM,SALPR

MVI and CLI
These two operations are similar to their more general “cousins”, except
that the second operand is a one–byte immediate constant.

The immediate constant may be of any of the following formats:
B binary
C character
X hexadecimal

The format of these instructions are: MVI Operand1,ImmediateOperand
CLI Operand1,ImmediateOperand

Examples of these instructions are: MVI CONTROL,C’$’ Character ‘$’
CLI CODE,C’5’ Character ‘5’

Character Literals vs. Immediate Operands
The main characteristic of an immediate operation is that the operand, called the“immediate
operand” is contained within the instruction. The main characteristic of a literal operand is
that it is stored separately from the operand, in a literal pool generated by the assembler.

Here are two equivalent instructions to set the currency sign.

Use of a literal: MVC DOLLAR,=C’$’

Use of immediate operand MVI DOLLAR,C’$’

Note the “=” in front of the literal. It is not present in the immediate operand.

S/370 Assembler Language Character Data

Page 189 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Insert Character (IC) and Store Character (STC)
The IC instruction moves a single byte (8 bits) from storage into a register and the STC
moves a byte from the register to storage. Each access only the rightmost 8 bits of the
general purpose register, denoted as bits 24 through 31.

Each of the instructions is a type RX instruction of the form OP REG,MEMORY. Note that:
1. The first operand denotes a general purpose register, of which only the rightmost

8 bits (24 – 31) will be used.
2. The second operand references one byte in storage, as each EBCDIC

character is stored in a single byte. As this is a byte address, there are no
restrictions on its value; it can be an even or odd number.

The opcode for IC is X‘43’, while that for STC is X‘42’. The object code is of the form
OP R1,D2(X2,B2).

Type Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP R1 X2 B2 D2 D2D2

The first byte contains the 8–bit instruction code, either X‘42’ or X‘43’.

The second byte contains two 4–bit fields, each of which encodes a register number. The
field R1 denotes the general purpose register that is either the source or destination of the
transfer. The field X2 denotes the optional index register to be used in address calculation.

The third and fourth bytes hold the standard base/displacement address.

The IC instruction does not change the three leftmost bytes (bits 0 – 23) of the register being
loaded. The STC instruction does not use these three bytes.

Case Conversion
We now present an interesting use for these two instructions. This is the conversion of
alphabetical characters from upper case to lower case and back again. In order to do this, we
need a few instructions that have yet to be discussed.

The three instructions are here given in their immediate format, though there are other forms
that will be discussed later. These are logical AND, logical OR, and logical XOR. Each of
these operations is a bitwise operation, defined as follows.

AND 00 = 0 OR 0+0 = 0 XOR 00 = 0
01 = 0 0+1 = 1 01 = 1
10 = 0 1+0 = 1 10 = 1
11 = 1 1+1 = 1 11 = 0

The three instructions, as implemented in the S/370 architecture, are as follows:

NI Logical AND Immediate Opcode X‘92’

OI Logical OR Immediate Opcode X‘96’

XI Logical XOR Immediate Opcode X‘97’

Each instruction is type SI, and is written as source code in the form OP TARGET,MASK.
The indicated operation is applied to the TARGET and the result stored in the TARGET.

S/370 Assembler Language Character Data

Page 190 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

Another Look at Part of the EBCDIC Table
In order to investigate the difference between upper case and lower case letters, we here
present a slightly different version of the EBCDIC table.

Zone 8 C 9 D A E
Numeric

1 “a” “A” “j” “J”
2 “b” “B” “k” “K” “s” “S”
3 “c” “C” “l” “L” “t” “T”
4 “d” “D” “m” “M” “u” “U”
5 “e” “E” “n” “N” “v” “V”
6 “f” “F” “o” “O” “w” “W”
7 “g” “G” “p” “P” “x” “X”
8 “h” “H” “q” “Q” “y” “Y”
9 “i” “I” “r” “R” “z” “Z”

The structure implicit in the above table will become more obvious when we compare
the binary forms of the hexadecimal digits used for the zone part of the code.

Upper Case C = 1100 D = 1101 E = 1110
Lower Case 8 = 1000 9 = 1001 A = 1010

Note that it is only one bit in the zone that differentiates upper case from lower case.
In binary, this would be noted as 0100 or X‘4’. As this will operate on the zone field of a
character field, we extend this to the two hexadecimal digits X‘40’. The student should
verify that the one’s–complement of this value is X‘BF’. Consider the following operations.

UPPER CASE
‘A’ X’1100 0001’ X’1100 0001’

OR X ‘40’ X‘0100 0000’ AND X ‘BF’ X‘1011 1111’
X’1100 0001’ X’1000 0001’

Converted to ‘A’ ‘a’

Lower case
‘a’ X’1000 0001’ X’1000 0001’

OR X ‘40’ X‘0100 0000’ AND X ‘BF’ X‘1011 1111’
X’1100 0001’ X’1000 0001’

Converted to ‘A’ ‘a’

We now have a general method for changing the case of a character, if need be.
Assume that the character is in a one byte field at address LETTER.

Convert a character to upper case. OI,LETTER,=X‘40’
This leaves upper case characters unchanged.

Convert a character to lower case. NI,LETTER,=X‘BF’
This leaves lower case characters unchanged.

Change the case of the character. XI,LETTER,=X‘40’
This changes upper case to lower case and lower case to upper case.

