Chapter 10: Handling Character Data

Processing Character Data

We now discuss the definitions and uses of character datain an IBM Mainframe computer.
By extension, we shall also be discussing zoned decimal data. Character data and zoned
decimal data are stored as eight—bit bytes. These eight—bit bytes are seen by IBM as being
organized into two parts. Thisdivision isshown in the following table.

Portion Zone Numeric
Bit 0 1 2 3 4 5 6 7

There are two things to note about thistable. Thefirst isthe bit numbering scheme used by
IBM, in which the leftmost bit in an item isaways bit 0. IBM seemsto be unique in this bit
numbering scheme; almost all others label the rightmost bit as bit O.

One might wonder about the nomenclature “zone” and “numeric”. In order to understand
why these names are given, we must recall the format of an IBM 026 punch card. The point
here isthat the EBCDIC (Extended Binary Coded Decimal Interchange Code) encoding was
designed for compatibility with the IBM 029 punch card codes which evolved from the IBM
026 punch card code illustrated below.

Spr:u!
Digits Letters - Characters .
0123456789 ABGDEFGHI|JEKLMNOPORS TUVWXYZ A.n=5s/ %eg
& ﬁ ﬁ & 12 Punching
Fott
11 Punching
ooRRARNGE Pomriod
copoooo0d pooopneoe 1 bl TR R T E] pooooO0D
ZI4HSAT RN peAnIRNEMN y: >4 4 e S0 0450 30 57 5 00 0 61 R -] L nMRANTRERN
PR RERRRERY IEEEEEREI [i] L IEEERERRRREEE 1111191
2222222222 222222222 2 22222222223323112 22222222
33332333333 3333333313 LR E]] 333333333393 04304 03332332232
TR TYYYYTILE L4444 4 4405444944404 444 ddddddadangesfeqDallassasnas
:ssussssniﬂ{ 555555555555() 5555[]4 S50y 4q5555555555945945 $555555%
sEsEsesnsEaeaelq4seussenaaesas]) ssess] seesqqqecscisssscgqaqqs GEEEEEEE
IR rAITI NI AIAYq A NRRNILIRIATRRNNY PR R R RN R R AR ERERRARARRRR R R IX3REEE R}
sasanssasssassasdssnunnnnnansnsgennsssaflgsanses llltlt!illl sfBsDD0Desnaanbe
PRI LU R RRE LR AR L AL EEREEREEEEEE L]

Note the structure of the column punches for the a phabetic character set. Each letter is
represented by a punch in either column 11 or 12 (the zone punch) and a punch in one of the
columns numbered 0 through 9 (the numeric punch). While the digits are represented by a
single punch, the requirement to have a full-byte representation in the character code has
lead to their being assigned a zone code as well.

Asnoted in a previous chapter, the EBCDIC coding scheme was designed with the specific
goal of easy tranglation from IBM 029 punched card codes, with the names “zone” and
“numeric” being retained from those days. Why not keep a bit of history?

Page 177 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

The EBCDIC Character Set
Hereisthe set of important EBCDIC codes.

Character Punch Code EBCDIC
‘0 0 FO
‘r 1 F1
‘g 9 F9
‘A’ 12-1 C1
‘B’ 12-2 Cc2
il 12-9 C9
‘J 11-1 D1
‘K’ 11-2 D2
‘R’ 11-9 D9
‘S 0-2 E2
‘T 0-8 E3
'z 0-9 E9

Note that the EBCDIC codesfor the digits ‘0’ through ‘9" are exactly the zoned decimal
representation of those digits. (But see below).

The DS declarative is used to reserve storage for character data, while the DC declarative is
used to reserveinitialized storage for character data. There are constraints on character
declarations, which apply to both the DS and DC declaratives.

1. Their length may be defined from 1 to 256 characters.
Asapractical matter, long character constants should be avoided.

2. They may contain any character. Characters not available in the standard
set may be introduced by hexadecimal definitions.

3. Thelength may be defined either explicitly or implicitly.
It isusualy agood idea not to do both, asthis can lead to mistakes.

Consider the case in which a DC declarative is used to define a character constant. If the
length attribute is specified, it overrides the length implied by the constant itself. Remember
that the length is realy a byte count, which is the same as a character count. The following
examples will illustrate the issues of both explicit and implicit length definitions.

MONTH1 DC CL6° SEPTEMBER STORED AS ‘ SEPTEM
MONTH2 DC CL6‘ MAY STORED AS ‘ MAY
MONTH3 DC CL6° AUGUST’ STORED AS ‘ AUGUST’

In the first case, the explicit length isless than the actual length of the constant, so that the
value stored is truncated after the explicit length is stored. The rightmost characters are lost.

In the second case, the explicit length is greater than the actual length of the constant. The
value stored is padded with blanks out to the specified explicit length; here 3 are added.

It should be obvious that nothing special happens when the explicit length is exactly the same
asthe length of the constant. There may be reasons to do this, possibly for documentation.

Page 178 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Defining Character Strings

While the term “string” is not exactly appropriate in this context, we need some way to speak
of asequence of characters such as defined above. Inthe IBM parlance, the sequence
defined by the declarative DC CL6° AUGUST’ isviewed as character data. Strictly
speaking, thisis a sequence of six characters.

We shall speak of general string handling in alater chapter. Theissue at this point is how the
assembler determines the length of the string when executing an instruction such as MWC.
The answer is that each such instruction specifically encodes the length of the string to be
processed. Again, it istheinstruction that really defines the length and not the declaration.

Examination of the object code for these character instructions will show that the length is
stored in modified form as an 8-bit unsigned integer. Actually, the length is decremented by
one beforeit isstored. The range of an 8-hit unsigned integer is 0 through 255 inclusive, so
that the length that can be stored ranges from 1 through 256. There seemsto be no provision
for zero length sequences of characters. Zero length strings will be discussed in alater
chapter in which the entire idea of a string will be fully devel oped.

First, let’s recall one major difference between the DS and DC declaratives. The DS may
appear to initialize storage, but it does not. Only the DC initializes storage. The differenceis
illustrated by considering the following two declarations.

V1 DS CL4' 0000 Define four bytes of uninitialized
storage. The ‘0000" is just a coment.
The four bytes allocated will have sone
val ue, but that is unpredictable.

V2 DC CL4* 0000° Define four bytes of storage, initialized
to the four bytes FO FO FO FO, which
represent the four characters.

One should use the DS declaration only for fields that will be initialized by some other
means, such asthe MV C instruction that is discussed below. It isaways possible to move
values into an area of memory initialized with aDC declarative. Inthe above example, itis
possible to move the character constant * 2222’ to V2, which would then contain that value.

The student should also note that it is very easy to write the above declarations in aform that
might cause assembly errors. Consider the following two declarations.

V3 DS CL4 ' 0000° Define four bytes of uninitialized
storage. Note the blank after 'CL4" .
Since everything after the "CL4’ is a
coment, this does not cause a problem

V4 DC CL4 ‘0000 This causes an assenbly error. The DC
declarative exists to initialize the
storage area, but the blank after the
‘CL4’ introduces a comment. The ‘0000’
is not recogni zed as a val ue.

Note that no declaration above actually defines a number, but just a sequence of characters
that happen to be digits.

Page 179 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Explicit Base Addressing for Character I nstructions

We now discuss a number of ways in which the operand addresses for character instructions
may be presented in the source code. One should note that each of these source code
representations will give rise to object code that appears almost identical. These examples
are taken from Peter Abel [R_02, pages 271 — 273].

Assume that general—purpose register 4 is being used as the base register, as assigned at
the beginning of the CSECT. Assume also that the following statements hold.

1. Generd purposeregister 4 contains thevalue X' 8002’ .

2. Thelabel PRI NT represents an address represented in base/offset form as 401A; that
isitisat offset X* 01A’" from the value stored in the base register, which is R4.
The addressthenis X' 8002’ + X' 01A’ =X 801C .

3. Given that the decimal number 60 is represented in hexadecimal as X' 3C'
the address PRI NT+60 must then be at offset X* 01A" + X' 3C =X' 56’ from
the addressin the baseregister. X' A' + X' C ,indecimal,is10+ 12=16+ 6.

Note that this gives the address of PRI NT+60 as X' 8002’ + X' 056’ = X' 8058’
whichisthesameas X' 801C' + X' 03C'. Thesum X' C + X' C' ,indecimdl, is
represented as 12 + 12 =24 =16 + 8.

4. Thelabel ASTERS is associated with an offset of X' 09F' from the valuein the
base register; thusit islocated at address X' 80A1’ . Thislabel references a storage
of two asterisks. Asadecimal value, the offset is 159.

5. That only two characters are to be moved by the MV C instruction examples to be
discussed. Since the length of the move destination is greater than 2, and since the
length of the destination is the default for the number of characters to be moved, this
implies that the number of characters to be moved must be stated explicitly.

Thefirst example to be considered has the simplest appearance. It is asfollows:
MVC PRI NT+60(2) , ASTERS

The operands here are of theform Dest i nati on(Lengt h), Sour ce.
The destination is the address PRI NT+60. The length (number of characters
to move) is2. Thiswill be encoded in the length byteas X* 01’ , asthe length
byte stores one less than the length. The source is the address ASTERS.

Asthe MV C instruction is encoded with opcode X* D2’ , the object code hereis as follows:

Type | Bytes Operands 1 2 3 4 5 6
SS(1) 6 D1(L,B1),D2(B2) OP L [B;D,| DD, | B,D, | D:D,
D2 01 40 56 40 9F

The next few examples are given to remind the reader of other ways to encode
what is essentially the same instruction.

Page 180 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

These examples are based on the true nature of the source code for a MVC instruction, which
ismwC Di(L, B1), D2(B2). Inthisformat, we have the following.

1. Thedestination addressis given by displacement D1 from the address stored in
the base register indicated by B1.

2. The number of charactersto moveis denoted by L.

3. Thesource addressis given by displacement D2 from the address stored in
the base register indicated by B2.

The second example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT+60 GET ADDRESS PRI NT+60 | NTO R8
MVC 0(2, 8), ASTERS MOVE THE CHARACTERS

Note the structure in the destination part of the source code, whichis0(2, 8) .

0(2,8)
Displac Ement T tB ase
Length
The displacement is 0 from the address X* 8058’ , which isstored in R8. The object codeis:
Type | Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | D:D,
D2 01 80 00 40 9F

The instruction could have been written as MWC 0(2, 8), 159(4) , asthelabel
ASTERS isfound at offset 159 (decimal) from the addressin register 4.

The third example uses an explicit base and displacement representation of the destination
address, with general—purpose register 8 serving as the explicit base register.

LA RS, PRI NT GET ADDRESS PRI NT | NTO R8
MVC 60(2, 8), ASTERS SPECI FY A DI SPLACEMENT

Note the structure in the destination part of the source code, whichis60(2, 8) .

60(2,8)

+.

Displacement TtBase

Length
The displacement is 60 from the address X' 801C' , stored in R8. The object codeis:
Type Bytes Operands 1 2 3 4 5 6
S3(1) 6 D1(L,B1),D2(B2) OP L [B;D;| D:D; | B,D, | DD,

D2 01 80 3C 40 9F

Theinstruction could have been written asMWC 60(2, 8), 159(4) , asthe label
ASTERS Iisfound at offset 159 (decimal) from the addressin register 4.

Page 181 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Sample Declarations

We now give afew examples of declarations of character constants. These examples will
appear in the form of an assembler listing. Each line will have four parts: alocation, the
object code (EBCDIC characters) that would be generated, the declaration itself, and then
some comments in the field that the assembler would reserve for comments.

LOC (bj. Code Sour ce Code Comrent s
005200 40404040 Bl DC CL4* * FOUR BLANKS

005204 40404040 B2 DC 4CL1° ' FOUR SINGLE BLANKS. NOTE
THE | DENTI CAL OBJECT CODE.

005208 FOFOFOFO Z1 DC C 0000 FOUR DIG TS

00520C F2F2F2F2 N2 DC 4CL1' 2" FOUR MORE DIG TS
TheMVC Instruction

The MV C (Move Character) instruction is designed to move character data, but it can be

used to move datain any format, one byte at atime. Aswe shall see later, the MV C can be
used to move packed decimal data, but thisis not advised as strange errors can occur.

The MCV instruction is a storage-to—storage (type SS) instruction. The opcodeis X' D2’ .
Theinstruction may bewrittenas MVC DESTI NATI ON, SOURCE
An example of the instruction is WC F1, F2

The format of the instruction is WC D1(L, B1),D2(B2). Thisformat reflects
the fact that each of the source and destination addresses is specified by a base register (often
the default base register) and a displacement. Hereisthe format of the object code.

Type Bytes Form 1 2 3 4 5 6

S(1) 6 D1(L,B1),D2(B2) | X D2’ L | B.D;, | DiD; | B,D, | D.D,

Here are afew comments on MV C.

1. It may move from 1 to 256 bytes, determined by the use of an 8-bit number
as alength field in the machine language instruction.

The destination length is first decremented by 1 and then stored in the length byte,
which can store an unsigned integer representing values between 0 and 255.
This disalows alength of 0, and alows 8 bitsto store the value 256.

2. Databeginning in the byte specified by the source operand are moved one
byte at atimeto the field beginning with the byte in the destination operand.

One of the reasons for complexity of the implementation is that the source
and destination regions may overlap.

3. Thelength of the destination field determines the number of bytes moved.

Page 182 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Example of the MV C Instruction
Consider the example assembly language statement, which moves the string of
characters at 1abel CONANME to the location associated with the label Tl TLE.

MWC TI TLE, CONAVE

Supposethat: 1. There are fourteen bytes associated with Tl TLE, say that it was
declared as TI TLE DS CL14. Decimal 14 is hexadecima E.

2. Thelabel TITLE isreferenced by displacement X*40A’
from the value stored in register R3, used as a base register.

3. Thelabel CONAME isreferenced by displacement X*42C
from the value stored in register R3, used as a base register.

Given that the operation code for MVC is X' D2’ , the instruction assembles as
D2 OD 34 OA 34 2C Lengthis 14 or XOFE; L -1 is X 0D

To betotally obvious with this example, let us disassembl e the object code that we have just
created by manual assembly. The only assumption at the start is that the byte with value
X' D2’ containsthe opcode for the instruction. Here again is the object code format.

Type Bytes Form 1 2 3 4 5 6

S(1) 6 D1(L,B1),D2(B2) | X D2’ L | B.D; | DiD; | B,D, | D.D;

Theopcode X' D2’ isthat for the MV C instruction (surprise!). Thisisatype SSinstruction
which has atotal of six bytes: the opcode byte and five bytes following.

The second byte contains the length field. Itsvalueis X' 0D’ , representing the decimal
value 13. Thisisone less than the length of the destination field, which must have length 14.

Bytes 3 and 4 represents an address, expressed in base/displacement format, as do bytes
5and 6. Thevaluein bytes 3 and 4 isa16-bit number, in hexadecimal itis X' 340A’ .
This indicates that general purpose register 3 is being used as the base for this address and
that the offset isgiven by X' 40A’ . Suppose that register 3 containsthevalue X' 1700’ .
The address represented would then be X 1700° + X' 40A= X' 1BOA’ .

MVC: Explicit Register Usage
Theinstruction may be written explicitly in theform W\WC D1(L, B1), D2(B2)

Consider the following example: WC 32(5, 7) , NAME. In this example, suppose that
general—purpose register 7 hasthevalue X' 22400’ . We note that the label NAMVE
represents an address that will be converted to the form D2(B2) ; that is, a displacement
from abase register. This base register might be register 7 or any of the ten registers (R3 —
R12) available for general use.

We examine the specification of the first argument, which is the destination address.
Itisof theform D1(L, B1). ThelengthisL =5. Thisindicates that five charactersareto
be moved. The displacement isdecimal 32, or X' 20’ .

Page 183 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

The address of thefirst character in the destination is given by adding this displacement

to the contents of the base register: X' 22400’ + X' 20’ = X' 22420’ . Five charactersare
moved to the destination. The fifth character is moved to alocation that is four bytes
displaced from the first character; its addressis X' 22424’ .

Suppose that the label NAME corresponds to an address given by offset X' 250" (592 in
decimal) from general—purpose register 10 (denoted in object code by X' A").

When the instruction is written in the form WC D1(L, B1), D2(B2) , we seethat it has
theform WC 32(5, 7),592(10). ALL NUVBERS ARE DECI MAL.

In the object code format, the value stored for the length attribute is one less than
the actual length. The length is 5, so the stored valueis4, or X' 04’ .

The object codeformatisD2 04 70 20 A2 50.
Again, recall the object code format for this instruction.

Op Code Length Base Displacement Base Displacement

D 2 0 4 7 0 2 0 A 2 5 0

MVC: Example of L ength Mismatch

The number of bytes (characters) to move may be explicitly stated in the source statement.
However if it is not explicitly stated, the number is taken as the length (in bytes or characters)
of the destination field. Consider the following program fragment.

WC F1, F2
F1 DC CL4" JUNE
F2 DC CL5' APRI L’

What happensis shown in the next figure.

F1[JUN[E] F2

F1|A[PIR]T F2AIPIR|T[L]

The assembl er recognizes F1 as a four—byte field from its declaration by the DC
statement. Thisimplicitly sets the number of charactersto be moved. The character ‘L’ is
not moved, asit isthefifth character in F2. Itisat address F2+4.

MVC: Another Example of L ength Mismatch

The number of bytes (characters) to move may be explicitly stated in the source code. While
the explicit length may exceed that of the destination field, your instructor (but not many
textbook authors) considers that bad programming practice.

Page 184 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Consider the following program fragment, in which an explicit length of 3isset. Recall the
form of theinstruction: MWC D1(L, Bl1), D2(B2).

MWC F1(3), F2 The (3) says nove three characters
F1 DC CL4' JUNE
F2 DC CL5' APRI L’
What happensis shown in the next figure.

F1[J/U|N[E] F2

F1 | AIPIRIE F2A[P[R|T |1,
Note that only “APR” ismoved. The last character of F1, whichisan “E”, is not changed.
This last character is at address F1+3.

MVC: Example 3
We may use relative addressing as well as an explicit length declaration. Consider the
following program fragment.

MWC F1+1(2), F2+2
F1 DC CL4' JUNE
F2 DC CL5' APRI L’

This calls for moving two characters from address F2+2 to address F1+1. Thetwo
characters at address F2+2 are“ Rl " . Thetwo characters at the destination address F1+1
are” UN' . What happensis shown in the next figure.

F1JUNE] F2APRIL

F1|JIRITIE] F2IA[PIRIT [T,

The other two charactersin F1, at addresses F1 and F1+3, are not changed.

Page 185 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

MVC: Example 4
We now consider the explicit use of base registers.

Recall the form of theinstruction: MVC D1(L, B1), D2(B2) .

In the following three examples, we suppose that PRI NT is alabel associated with
an output field of length 80 bytes. In redlity, it only must be “big enough”.

FRAGDL M/C PRI NT+60(2), =C **’

FRAGD2 LA R8, PRI NT+60 LOAD THE ADDRESS.
M/C 0(2, 8), =C **’ DEST ADDRESS | S PRI NT+60
FRAGO3 LA RS8, PRI NT LOAD THE ADDRESS.

MVC 60(2, 8),=C **’ NOTE OFFSET IS 60

Suppose that the address of PRI NT is given by base register 12 and displacement X* 200’ .
Suppose register 12 containsavaue of X' 1000’ . Thelabel PRI NT references address
X 1200’ . Thevaueof PRI NT+60 isthen X' 1200’ + X 60’ =X 1260’ .

As an aside, note that it appears more natural to write the first instruction in the form.
FRAR)1 MVC PRI NT+60(2), =C **’

Note that there is a space following the comma. This space turns whatever fallowsit into a
comment, thus rendering the instruction incomplete and erroneous.

Describing Input Fields
Consider the following block that declares area for an 80—column input (corresponding to an
80-column punch card) that is divided into fields.

Hereis adeclaration of an 80-byte input areathat will be divided into fields.
CARDIN DS 0CL80 The record has 80 bytes.

NANME DS CL30 The first field has the name.
YEAR DS CL10 The second field.
DCOB DS CL8 The third field.
GPA DS CL3 The fourth field.

DS CL29 The | ast 29 chars are not used.

The address corresponding to the label NAME is the same as that for the label CARDI N. The
field NAVE corresponds to addresses NAME through NAMVE+29, inclusive.

The address corresponding to the label YEAR is the same as the address CARDI N+30. The
field YEAR corresponds to addresses YEAR through YEAR+9, inclusive. Equivalently, the
field corresponds to addresses CARDI N+30 through CARDI N+39, inclusive.

Relative addressing will often be used to extract fields from an input record or place fields
into an output record.

Page 186 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Character Comparison: CLC
The CLC (CompareLogical Character) instruction is one of the two used to compare
character fields, one byte at atime, left to right.

Comparison is based on the binary contents (EBCDIC code) contents of the bytes.
The sort order isfrom X’00 through X' FF .

Theinstruction may bewrittenas CLC Oper andl, Oper and2
The format of the instruction is CLC D1(L, B1), D2(B2)
An example of the instruction is CLC NAMEL, NAME2

This instruction sets the condition code that is used by the conditiona branch instructions.
The condition codeis set as follows:

If Operandl is equal Operand?2 Condition Code =0
If Operandl islower than Operand2 Condition Code=1
If Operandl is higher than Operand2 Condition Code=2

The operation moves, byte by byte, from left to right and terminates as soon as an unequal
comparison isfound or one of the operands runs out.

Using the Condition Codes

The character comparison operators, CLC and CLI, set the condition codes. These codes are
used by the branching instructions in their non—numeric form. Here are the standard
comparisons.

BE Branch Equal Conditi on Code = 0
BNE Branch Not Equal Condi tion Code # O
BL Branch Low Condi tion Code =1
BNL Branch Not Low Condition Code # 1
BH Branch Hi gh Condi ti on Code = 2
BNH Branch Not Hi gh Condi ti on Code # 2.
Here are two equivalent examples.
CcLC XY

BL J20LCEQ X sorts less than Y
BE J20LCEC Yis equal to Y

CLC XY
BNH J20LCEC X does not sort higher than Y

Page 187 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

CLC: An Example
Consider the following code fragment. Note that the comparison valueis given
as the seven EBCDIC characters* 0200000’ .

Presumably, this would be converted into seven Packed Decimal digits and held to
represent the fixed point number 2000.00, presumably $2,000.00.

C20 CLC SALPR, =C 0200000’ COWPARE TO 2, 000. 00
BNH C30 NOT ABOVE 2, 000. 00
BL (40 LESS THAN 2, 000. 00
* EQUAL TO 2, 000. 00

Again, thisis presented as representing Packed Decimal data, which it probably
doesrepresent. The comparison, however, isan EBCDIC character comparison.

Here is another example, built around the first one. It represents an important
specia case that we shall consider when discussing Packed Decimal format.

C20 CLC SALPR, =C ’ 'S THE FI ELD BLANK?
BNE NOTBLNK
M/C SALPR, =C 0000000’ CONVERT BLANKS TO 0’ S

NOTBLANK PACK SALNUM SALPR

MVI and CLI
These two operations are similar to their more general “cousins’, except
that the second operand is a one-byte immediate constant.

The immediate constant may be of any of the following formats:

B binary
C character
X hexadecimal

The format of theseinstructionsare: WI Oper andl, | medi at eOper and
CLI Operandl, | nmedi at eQper and

Examples of these instructions are: MVI CONTROL, C $ Character ‘$
CLI CODE, C 5’ Character ‘5’

Character Literalsvs. Immediate Operands

The main characteristic of an immediate operation is that the operand, called the"immediate
operand” is contained within the instruction. The main characteristic of aliteral operandis
that it is stored separately from the operand, in aliteral pool generated by the assembler.

Here are two equivalent instructions to set the currency sign.
Useof aliteral: WC DOLLAR, =C $’
Use of immediateoperand MWI DOLLAR, C $’

Notethe“ =" infront of theliteral. It isnot present in the immediate operand.

Page 188 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Insert Character (I1C) and Store Character (STC)

The IC instruction moves a single byte (8 bits) from storage into aregister and the STC
moves a byte from the register to storage. Each access only the rightmost 8 bits of the
general purpose register, denoted as bits 24 through 31.

Each of the instructionsis atype RX instruction of the form OP REG, MEMORY. Note that:
1. Thefirst operand denotes a general purpose register, of which only the rightmost
8 bits (24 — 31) will be used.
2. The second operand references one byte in storage, as each EBCDIC
character isstored in asingle byte. Asthisisabyte address, there are no
restrictions on its value; it can be an even or odd number.

Theopcodefor ICis X' 43’ , whilethat for STCisX' 42’ . Theobject codeis of theform
OP R1, D2(X2, B2) .

Type | Bytes Operands 1 2 3 4
RX 4 R1,D2(X2,B2) OP Ri Xy, | BoDy | DDy

Thefirst byte contains the 8-bit instruction code, either X' 42’ or X' 43’ .

The second byte contains two 4-bit fields, each of which encodes a register number. The
field Ry denotes the general purpose register that is either the source or destination of the
transfer. The field X, denotes the optional index register to be used in address ca culation.

The third and fourth bytes hold the standard base/di splacement address.

The IC instruction does not change the three leftmost bytes (bits 0 — 23) of the register being
loaded. The STC instruction does not use these three bytes.

Case Conversion

We now present an interesting use for these two instructions. Thisis the conversion of
alphabetical characters from upper caseto lower case and back again. In order to do this, we
need afew instructions that have yet to be discussed.

The three instructions are here given in their immediate format, though there are other forms
that will be discussed later. These arelogical AND, logical OR, and logical XOR. Each of
these operations is a bitwise operation, defined as follows.

AND 0e0=0 OR 0+0=0 XOR 0©0=0
Oel=0 0+1=1 0el=1
1e0=0 1+0=1 1©0=1
lel=1 1+1=1 1©1=0

The three instructions, as implemented in the S/370 architecture, are as follows:
NI Logical AND Immediate Opcode X' 92’
Ol Logica OR Immediate Opcode X' 96’
X1 Logica XOR Immediate Opcode X' 97’

Each instruction istype Sl, and is written as source code in the form OP TARGET, MASK.
Theindicated operation is applied to the TARGET and the result stored in the TARGET.

Page 189 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler Language Character Data

Another Look at Part of the EBCDIC Table
In order to investigate the difference between upper case and lower case |etters, we here
present adlightly different version of the EBCDIC table.

Zone 8 C 9 D A E
Numeric

1 “a “A” “I”7 “J

2 “b” “B” “K” “K” ‘g’ “S
3 “c” “Cr “1” “L “t" “T"
4 “d” “D” “m" “M” “u’ “u”
5 ‘e’ “E" “n” “N” “v" VT
6 “f” “F “o" “O" “w" “W
7 ‘g’ “G" “p’ “pr “X" “X"
8 “h” “H” “q’ “qQ ‘y” Yy
9 “i” “r “rr “R” “z" “Z"

The structure implicit in the above table will become more obvious when we compare
the binary forms of the hexadecimal digits used for the zone part of the code.

Upper Case C = 1100 D = 1101 E = 1110
Lower Case 8 1000 9 1001 A = 1010

Notethat it isonly one bit in the zone that differentiates upper case from lower case.

In binary, thiswould be noted as0100 or X' 4’ . Asthiswill operate on the zonefield of a
character field, we extend thisto the two hexadecimal digits X' 40’ . The student should
verify that the one’ s—=complement of thisvalueis X' BF’' . Consider the following operations.

UPPER CASE
‘A X 1100 0001’ X' 1100 0001’
OR X'40 X' 0100 0000’ AND X ‘BF X 1011 1111
X 1100 0001’ X' 1000 0001’
Converted to ‘A ‘a
L ower case
‘a X' 1000 0001’ X' 1000 0001’
OR X '40 X' 0100 0000’ AND X ‘BF X 1011 11171
X 1100 0001’ X' 1000 0001’
Converted to ‘A ‘a

We now have a general method for changing the case of a character, if need be.
Assume that the character isin aone byte field at address LETTER.

Convert acharacter toupper case. O, LETTER, =X 40’
This leaves upper case characters unchanged.

Convert acharacter to lower case. NI, LETTER, =X' BF’
This leaves lower case characters unchanged.

Change the case of the character. XlI, LETTER, =X 40’
This changes upper case to lower case and lower case to upper case.

Page 190 Chapter 10 Last Revised July 8, 2009
Copyright © 2009 by Edward L. Bosworth, Ph.D.

