Chapter 28: Virtual Storage Access Method (VSAM)

Author’sNote: This chapter is copied almost verbatim from the material in
Chapter 19 of the textbook by Peter Abdl. It isused by permission.

Virtua Storage Access Method (VSAM) isarelatively recent file organization method
for users of IBM OS/VS and DOS/VS. VSAM facilitates both sequential and random
processing and supplies a number of useful utility programs.

Theterm file is somewhat ambiguous since it may reference an 1/0O device or the records
that the device processes. To distinguish a collection of records, IBM OS literature uses
the term data set. VSAM provides three types of data sets:

1. Key-sequenced Data Set (KSDS). KSDS maintains records in sequence of key, such as
employee or part number, and is equivalent to indexed sequential access method (ISAM).

2. Entry-sequenced Data Set (ESDS). ESDS maintains records in the sequence in which
they wereinitially entered and is equivalent to sequentia organization.

3. Relative-Record Data Set (RRDS). RRDS maintains records in order of relative record
number and is equivalent to direct file organization.

Both OS/VS and DOS/V S handle VSAM the same way and use similar support programs
and macros, although OS has a number of extended features.

Thorough coverage of assembler VSAM would require an entire textbook. However, this
chapter supplies enough information to enable you to code programs that create, retrieve,
and update a VSAM data set. For complete details, see the IBM Access Methods Services
manual and the IBM DOS/V SE Macros or OS/V'S Supervisor Services manuals.

In the table below, RBA stands for “Relative Byte Address”, the byte’ s displacement
from the start of the data set.

Feature K ey—Sequenced Entry-Sequenced Relative-Record
KSDS ESDS RRDS
Record sequence By key In sequencein In sequence of
which entered relative record
number
Record length Fixed or variable Fixed or variable Fixed only
Access of records | By key via By RBA By relative
index or RBA record number
Change of address | Can changerecord | Cannot change Cannot change
RBA record RBA relative record
number
New records Distributed free Space at end of Empty slot in
space for records data set. data set.
Recovery of space | Reclaim space if No delete, but can Can reuse
record is del eted. overwrite old record. | deleted space.

Figure 28-1 Featuresof VSAM organization methods

Page 496 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

CONTROL INTERVALS

For al three types of data sets, VSAM stores records in groups (one or more) of control
intervals. Y ou may select the control interval size, but if you alow VSAM to do so, it
optimizes the size based on the record length and the type, of disk device being used. The
maximum size of a control interval is 32,768 bytes. At the end of each control interval is
control information that describes the data records:

|Rec-1 |Rec2 |Rec-3 [.... | Control Information |

A control interval contains one or more data records, and a specified number of control
intervals comprise a control area. VSAM addresses a data record by relative byte address
(RBA)-its displacement from the start of the data set. Consequently, the first record of a
dataset isat RBA 0, and if records are 500 bytes long, the second record is at RBA 500.

Thelist in Fig. 28-1 compares the three types of VSAM organizations.

ACCESSMETHOD SERVICES (AMYS)

Before physically writing (or "loading") recordsin aVSAM data set, you first catalog its
structure. The IBM utility package, Access M ethod Services (AMS), enables you to
furnish VSAM with such details about the data set as its name, organization type, record
length, key location, and password (if any). Since VSAM subsequently knows the
physical characteristics of the data set, your program need not supply as much detailed
information as would a program accessing an ISAM file.

The following describes the more important features of AMS. Full details are in the IBM
OS/VS and DOS/V'S Access Methods Services manual. You catalog a VSAM structure
using an AMS program named IDCAMS, as follows:

(O /| STEP EXEC PGVEI DCANVS
DOS: | | EXEC | DCAMS, Sl ZE=AUTC

Immediately following the command are various entries that DEFINE the data set. The
first group under CLUSTER provides required and optional entries that describe all the
information that VSAM must maintain for the data set. The second group, DATA, creates
an entry in the catalog for a data component, that is, the set of all control area and
intervals for the storage of records. The third group, INDEX, creates an entry in the
catalog for aKSDS index component for the handling of the KSDS indexes.

Figure 28-2 provides the most common DEFINE CLUSTER entries. Note that to
indicate continuation, a hyphen (=) follows every entry except the last. The following
notes apply to the figure.

Note: SYMBOL MEANING

[] Optional entry, may be omitted

{} Select one of the following options
@) Y ou must code these parentheses

I

"or", indicates one of the choices listed in the brackets
{A | B} meansto select either A or B

Page 496 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

Cluster Leve

DEFIHE CLUSTER
{ MeME(datz-set-name) -
{CYLINDERSCprimaryl secendaryl)}|

BLOCKSCprimaryl secondaryl) | (choose
RECORDSC primary[l secondaryl)| one)
TRACKSL{primary[secondaryl)} -
[INDEXED | NONINDEXED | NUMBERED] - (choose one)

[KEYS(length offset)l -
[RECORDSIZE{average maximum)] -
[VOLUMES{vol-ser[vol-ser ...1)]

Data component level

[DATA

([CONTROLINTERVALSIZE(size)] -
[IHAME{data-namel] -
[VOLUMESCvol-ser[vol-ser ...1)}1]
)]

Index component level

[IHDEX

{[HAME(index-namel] -
[VOLUMESCvol-serl vol-ser ...131]
2]

Figure 28-2 Entriesfor defininga VSAM data set

» DEFINE CLUSTER (abbreviated DEF CL) provides various parameters all contained
within parentheses.

* NAME isarequired parameter that supplies the name of the data set. Y ou can code
the name up to 44 characters with a period after each 8 or fewer characters, as
EMPLOYEE. RECORDS. P030. The name correspondsto job control, as follows:

OS: /1 FI LEVS DD DSNAME=EMPLOYEE. RECORDS. P030 ...
DOS: // DLBL FILEVS,' EMPLOYEE. RECDRDS. P030' , 0, VSAV

The name FILEV Sin this example is whatever name you assign to the file definition
(ACB) in your program, such as
filename ACB DDNAME=FI LEVS

* BLOCKS. You may want to load the data set on an FBA device (such as 3310 or
3370) or on a CKD device (such as 3350 or 3380). For FBA devices, alocate the
number of 512-byte BLOCKS for the data set. For CKD devices, the entry
CYLINDERS (or CYL) or TRACKS allocates space. The entry RECORDS allocates
gpace for either FBA or CKD. In all cases, indicate a primary allocation for a
generous expected amount of space and an optional secondary allocation for
expansion if required.

Page 497 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

» Choose one entry to designate the type of data set: INDEXED designates
key—sequenced, NONINDEXED is entry—sequenced, and NUMBERED is
relative—record.

» KEYSfor INDEXED only defines the length (from 1 to 255) and position of the key
in each record. For example, KEY S (6 0) indicates that the key is 6 byteslong
beginning in position O (the first byte).

* RECORDSIZE (or RECSZ) provides the average and maximum lengths in bytes of
data records. For fixed-length records and for RRDS, the two entries are identical.
For example, code (120b120) for 120-byte records.

* VOLUMES (or VOL) identifies the volume serial number(s) of the DASD volume(s)
where the data set is to reside. Y ou may specify VOLUMES at any of the three
levels; for example, the DATA and INDEX components may reside on different
volumes.

DEFINE CLUSTER supplies a number of additional specialized options described in the
IBM AMS manual.

ACCESSING AND PROCESSING

VSAM furnishes two types of accessing, keyed and addressed, and three types of
processing, sequential, direct, and skip sequential. The following chart shows the legal
accessing and processing by type of organization:

Type Keyed Access Addressed Access
KSDS Sequential Sequential

Direct Direct

Skip sequential
ESDS Sequential

Direct

RRDS Sequential

Direct

Skip sequential

In simple terms, keyed accessing is concerned with the key (for KSDS) and relative
record number (for RRDS). For example, if you read a KSDS sequentialy, VSAM
delivers the records in sequence by key (although they may bein a different sequence
physicaly).

Addressed accessing is concerned with the RBA. For example, you can access arecord in
an ESDS using the RBA by which it was stored. For either type of accessing method, you
can process records sequentially or directly (and by skip sequential for keyed access).
Thus you always use addressed accessing for ESDS and keyed accessing for RRDS and
may process either type sequentially or directly. KSDS, by contrast, permits both keyed
access (the normal) and addressed access, with both sequential and direct processing.

Page 498 Chapter 28 Revised January 19, 2010

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

KEY-SEQUENCED DATA SETS

A key-sequenced data set (KSDS) is considerably more complex than either ESDS or
RRDS but is more useful and versatile. Y ou always create ("load") a KSDS in ascending
sequence by key and may process a KSDS directly by key or sequentialy. Since KSDS
stores and retrieves records according to key, each key in the data set must be unique.

T —T]
Index set: 40 I ptr | 82 Iptr 2 Iptr

___f
r Sequence set Sequence set \ Sequence set

T

22iptr 32ieptr 4ﬂiptr 55iptr | B5iptr BEIptr 92Aptr | ol |
6| [25] {35 a2l lez| |75 85

Data 09| |28| |37 a5 | les | |77 87

18] [a0]| |a8 s5 | [FRee| |[so o | |rree| |FReE
22| [32| |40 FREE| |FRee| |82 FREE
7 7 7 77
70 VA v, v wa vs v
e e S [e o S—— B

Control area Control area Conrtrol area

Figure 28-3 K ey—sequenced or ganization

'Figure 28-3 provides asimplified view of a key-sequenced data set. The control
intervals that contain the data records are depicted vertically, and for this example three
control intervals comprise a control area. A sequence set contains an entry for each
control interval in a control area. Entries within a sequence set consist of the highest key
for each control interval and the address of the control interval; the address acts as a
pointer to the beginning of the control interval. The highest keys for the first control area
are 22, 32, and 40, respectively. VSAM stores each high key along with an address
pointer in the sequence set for the first control area.

At ahigher level, an index set (various levels depending on the size of the data set)
contains high keys and address pointers for the sequence sets. In Fig. 28-3, the highest
key for thefirst control areais 40. VSAM stores this value in the index set along with
an address pointer for the first sequence.

When a program wants to access arecord in the data set directly, VSAM locates the
record first by means of the index set and then the sequence set. For example, a program
requests access to arecord with key 63. VSAM first checks the index set as follows:

RECORD KEY INDEX SET ACTION
63 40 Record key high, not in first control area.
63 82 Record key low, in second control area.
Page 499 Chapter 28 Revised January 19, 2010

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

VSAM has determined that key 63 isin the second control area. It next examines the
sequence set for the second control areato locate the correct control interval.
These are the steps:

RECORD KEY SEQUENCE SET ACTION

63 55 Record key high, not in
first control interval.

63 65 Record key low, in second control interval.

VSAM has now determined that key 63 isin the second control interval of the second
control area. The address pointer in the sequence set directs VSAM to the correct control
interval. VSAM then reads the keys of the data set and |ocates key 63 as the first record
that it deliversto the program.

Free Space

Y ou normally alow acertain amount of free space in a data set for VSAM to insert new
records. When creating a key—sequenced data set, you can tell VSAM to alocate free
Space in two ways:

1. Leave space at the end of each control interval.
2. Leave some control intervals vacant.

If aprogram deletes or shortens arecord, VSAM reclaims the space by shifting to the left
al following records in the control interval. If the program adds or lengthens a record,
VSAM inserts the record in its correct space and moves to the right all following records
in the control interval. VSAM updates RBAs and indexes accordingly.

A control interval may not contain enough space for an inserted record. In such a case,
VSAM causes a control interval split by removing about half the records to a vacant
control interval in the same control area. Although records are now no longer physically
in key order, for VSAM they arelogically in sequence. The updated sequence set
controls the order for subsequent retrieval of records.

If there is no vacant control interval in acontrol area, VSAM causes a control area split,
using free space outside the control area. Under normal conditions, such a split seldom
occurs. To alarge degree, aVSAM data set is self-organizing and requires reorganization
less often than an ISAM file.

ENTRY -SEQUENCED DATA SETS

An entry-sequenced data set (ESDS) acts like sequential file organization but has the
advantages of being under control of VSAM, some use of direct processing, and
password facilities. Basically, the data set isin the sequence in which it is created, and
you normally (but not necessarily) process from the start to the end of the data set.
Sequentia processing of an ESDS by RBA is known as addressed access, which isthe
method you use to create the data set. Y ou may also process ESDS records directly by
RBA. Since ESDS is not concerned with keys, the data set may legally contain duplicate
records.

Page 500 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

Assume an ESDS containing records with keys 001, 003, 004, and 006. The data set
would appear as follows:

| 001 | 003 | 004 | 006 |

Y ou may want to use ESDS for tables that are to load into programs, for small files that
are always in ascending sequence, and for files extracted from a KSDS that areto be
sorted.

RELATIVE-RECORD DATA SETS

A relative-record data set (RRDS) acts like direct file organization but also has the
advantages of being under control of VSAM and offering keyed access and password
facilities. Basically, records in the data set are located according to their keys. For
example, arecord with key 001 isin the first location, arecord with key 003 isin the
third location, and so forth. If there is no record with key 002, that location is empty,
and you can subsequently insert the record.

Assume an RRDS containing records with keys 001, 003, 004, and 006. The data set
would appear as follows:

| 001 | ... | 003 | 004 | ... | 006 |

Since RRDS stores and retrieves records according to key, each key in the data set must
be unique.

Y ou may want to use RRDS where you have a small to medium-sized file and keys are
reasonably consecutive so that there are not large numbers of spaces. One example
would be a data set with keys that are regions or states, and contents are product sales
or population and demographic data.

Y ou could also store keys after performing a computation on them. As a simple example,
imagine adata set with keys 101, 103, 104, and 106. Rather than store them with those
keys, you could subtract 100 from the key value and store the records with keys 001, 003,
004, and 006.

VSAM MACRO INSTRUCTIONS

V SAM uses a number of familiar macros as well as afew new ones to enable you to
retrieve, add, change, and delete records. In the following list, for macros marked with an
asterisk, see the IBM DOS/V'S or OS/V S Supervisor and I/0O Macros manual for details.

e Torelate aprogram and the data:
ACB (access method control block)
EXLST (exitlist)

e To connect and disconnect a program and a data set:
OPEN (open a data set)
CLOSE (close adata set)
TCLOSE (temporary close)

Page 501 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

e To define requests for accessing data:

RPL (request parameter list)
e Torequest accessto afile:
GET (get arecord)
PUT (write or rewrite arecord)
POINT* (position VSAM at arecord)
ERASE (erase arecord previoudly retrieved with a GET)

ENDREQ* (end arequest)

e To manipulate the information that relates a program to the data:
GENCB* (generate control block)
MODCB* (modify control block)
SHOWCB (show control block)
TESTCB* (test control block)

A program that accesses aVSAM data set requires the usual OPEN to connect the

data set and CLOSE to disconnect it, the GET macro to read records, and PUT to

write or rewrite records. An important difference in the use of macros under VSAM
isthe RPL (Request for Parameter List) macro. As shown in the following relationship,
aGET or PUT specifies an RPL macro name rather than afile name. The RPL in

turn specifies an ACB (Access Control Block) macro, which in its turn relates

to the job control entry for the data set:

Impesative macra:

GET RPL = RPLname
Deefine roqaest:

RFLnzme RPL ACE = VS5AMRame . . .
Define Ances Contral Block:

V5AMname ACE DDMAME =filename .. .

Jab comtral:
[iflename DD DSMAME = EMPLOYEE . RECORDS ., PO3D. ..

The ACB macro is equivaent to the OS DCB or DOS DTF file definition macros. As
well, the OPEN macro supplies information about the type of file organization, record
length, and key. Each execution of OPEN, CLOSE, GET, PUT, and ERASE causes
VSAM to check its validity and to insert a code into register 15 that you can check.

A return code of X'00" means that the operation was successful. Y ou can use the
SHOWCB macro to determine the exact cause of the error.

THE ACB MACRO: ACCESSMETHOD CONTROL BLOCK

The ACB macro identifies a data set that isto be processed. Its main purposeis to
indicate the proposed type of processing (sequentia or direct) and the use of exit
routines, if any. The DEFINE CLUSTER command of AMS has aready stored much of
the information about the data set in the VSAM catalog. When a program opens the data
set viathe ACB, VSAM delivers thisinformation to virtual storage.

Page 502 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

Entries for an ACB macro may be in any sequence, and you may code only those that
you need. Following is the general format, which you code likeaDCB or DTF,

with acomma following each entry and a continuation character in column 72.

All operands are optional.

ACB AVEVSAM +
DDNAVE=f i | enane, +
EXLST=addr ess +

MACRF=([ADR] [, KEY]
[,DIR [, SEQ [, SKP]
[,IN[, QUT]

[,NRM[, Al X]) +
STRND=numnber

name The name indicates the symbolic address for the ACB when assembl ed.
If you omit the DDNAME operand from the ACB definition, this name
should match the filename in your DLBL or DD job statement.

AM=VSAM Code this parameter if your installation also uses VTAM,;
otherwise, the assembler assumes VSAM.

DDNAME This entry provides the name of your data set that the program isto
process. This name matches the filename in your DLBL
or DD job statement.

EXLST The address references alist of your addresses of routines that provide
exits. Use the EXLST macro to generate the list, and enter its name as
the address. A common use is to code an entry for an end—of—file exit for
sequentia reading. If you have no exit routines, omit the operand.

MACRF The options define the type of processing that you plan.
In the following, an underlined entry is a default:
ADR| KEY Use ADR for addressed access (KS and ES)
and KEY for keyed access (KS and RR).
DI R| SEC| SKP DIR provides direct processing, SEQ

provides sequential processing, and SKP
means skip sequentia (for KS and RR).

| N| QJT IN retrieves records and OUT permitsretrieval,
insertion, add-to—end, or update for keyed
access and retrieval, update, or
add-to—end for addressed access.

NRV Al X The DDNAME operand supplies the name of
the data set (or path). NRM means normal
processing of the data set, whereas AIX means
that thisis an alternate index.

Other MACREF options are RST| NRS for resetting catalog
information and NUB| UBF for user buffers.

Page 503 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

STRNC The entry supplies the total number of RPLs (request parameter
lists) that your program will use at the same time (the default is 1).

ACB aso has provision for parameters that define the number and size of buffers;
however, the macro has standard defaults.

In the program examplein Fig. 28-4, the ACB macro VSMFILOT has only two entries
and allows the rest to default. Accessis keyed (KEY), processing is sequentia (SEQ),
and thefileisoutput (OUT). Thereis no exit list, STRNO defaultsto 1, and MACRF
defaultsto NRM (normal path).

The assembler does not generate an I/0O module for an ACB, nor does the linkage editor
include one. Instead, the system dynamically generates the module at execute time.

THE RPL MACRO: REQUEST PARAMETER UST
The request macros GET, PUT, ERASE, and POINT require areference to an RPL
macro. For example, the program in Fig. 28-4 issues the following GET macro:

GET RPL=RPLI STI N

The operand supplies the name of the RPL macro that contains the information needed to
access arecord. If your program isto access adata set in different ways, you can code an
RPL macro for each type of access; each RPL keeps track of itslocation in the data set.

The standard format for RPL is as follows. The name for the RPL macro is the one that
you code in the GET or PUT operand. Every entry isoptiona. (ELB: Note the
non-blank character in column 72 to indicate continuation on the next line.)

Namefield Operation Operands Column 72

RPLname RPL AM=VSAM, +
ACB=address,
AREA=address,
AREALEN=length,
ARG=address,
KEY LEN=length,
OPTCD=(options),
RECLEN = length

+ 4+ + + + +

AM The entry VSAM specifies that thisisaVSAM (not VTAM)
control block.

ACB The entry gives the name of the associated ACE that
defines the data set.

AREA The address references an 1/0 work areain which arecord
is available for output or isto be entered on input.

AREALEN The entry supplies the length of the record area.

ARG The address supplies the search argument-a key, including

arelative record number or an RBA.

KEYLEN The length isthat of the key if processing by generic key.
(For normal keyed access, the catal og supplies the key length.)

Page 504 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

OPTCD Processing options are SEQ, SKP, and DIR; request options are UPD
(update) and NUP (no update). For example, a direct update
would be (DIR,UPD).

RECLEN For writing arecord, your program supplies the length to VSAM, and
for retrieval, VSAM supplies the length to your program. If records are
variable length, you can use the SHOWCB and TESTCB macrosto
examine the field (see the IBM Supervisor manual).

THE OPEN MACRO
The OPEN macro ensures that your program has authority to access the specified data set
and generates VSAM control blocks.

[l abel] OPEN address [,address]
The operand designates the address of one or more ACBs, which you may code either as
amacro name or as aregister notation (registers 2-12); for example:

OPEN VSFI LE

or LA 6, VSFILE
OPEN (6)

Y ou can code up to 16 filenamesin one OPEN and can include both ACB names and
DCB or D1F names. Note, however, that to facilitate debugging, avoid mixing themin
the same OPEN. OPEN sets areturn code in register 15 to indicate success (zero) or
failure (nonzero), which your program can test:

X'00 Opened al ACBs successfully.

X'04 Opened al ACBs successfully but issued a
warning message for one or more.

X'08 Failed to open one or more ACBSs.

On afailed OPEN or CLOSE, you can a so check the diagnostics following program
execution for amessage such as OPEN ERROR X' 6E' , and check Appendix K
of the IBM Supervisor manual for an explanation of the code.

THE CLOSE MACRO
The CLOSE macro completes any I/O operations that are still outstanding, writes any
remaining output buffers, and updates catalog entries for the data set.

[label] CLOSE address [, address ...]

Y ou can code up to 16 names in one CLOSE and can include both ACB names
and DCB or DTF names. CLOSE sets areturn code in register 15 to indicate
success or failure, which your program can test:

X'00 Closed all ACBs successfully.
X'04 Failed to close one or more ACBs successfully.

X'08 Insufficient virtual storage space for close routine
or could not locate modules.

Page 505 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

THE REQUEST MACROS: GET. PUT. ERASE

The VSAM request macros are GET, PUT, ERASE, POINT, and ENDREQ. For each
of these, VSAM setsregister 15 with areturn code to indicate success or failure of the
operation, as follows:

X'00 Successful operation.

X'04 Request not accepted because of an active request from
another task on the same RPL.
End-of-file also causes this return code.

X'08' A logical error; examine the specific error code in the RPL.
X'oC' Uncorrectable 1/0 error; examine the specific error code in the RPL.

The GET Macro

GET retrieves arecord from a data set. The operand specifies the address of an RPL that
defines the data set being processed. The entry may either (1) cite the address by name
or (2) use register notation, any register 2-12, in parentheses.

Y ou may use register 1; its use is more efficient, but GET does not preserve its address.
1. GET RPL=RPLnane

2. LA reg, RPLnane
GET RPL=(reg)

The RPL macro provides the address of your work area where GET isto deliver an input
record. Register 13 must contain the address of a save area defined as 18-fullwords.

Under sequential input, GET delivers the next record in the data set. The OPTCD entry in
the RPL macro would appear, for example, as OPTCD=(KEY ,SEQ) or
OPTCD=(ADR,SEQ). Y ou haveto provide for end-of—file by means of an EXLST
operand in the associated ACB macro; see Fig. 28-4 for an example.

For non-sequentia accessing, GET delivers the record that the key or relative record
number specifiesin the search argument field. The OPTCD entry in the RPL macro
would appear, for example, as OPTCD = (KEY,SKP) or OPTCD= (KEY ,DIR), or as
an RBA in the search argument field, as OPTCD = (ADR,DIR).

You aso use GET to update or delete arecord.

The PUT Macro

PUT writes or rewrites arecord in adata set. The operand of PUT specifies the address
of an RPL that defines the data set being processed. The entry may either (1) cite the
address by name or (2) use register notation, any register 2-12, in parentheses. Y ou may
useregister 1; its use is more efficient, but PUT does not preserve its address.

1. PUT RPL=RPLnane

2. LA reg, RPLnane
PUT RPL=(reg)

Page 506 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

The RPL macro provides the address of your work area containing the record that
PUT isto add or update in the data set. Register 13 must contain the address of a
save area defined as 18 fullwords.

To create (load) or extend a data set, use sequential output. The OPTCD entry in the
RPL macro would appear, for example, as OPTCD=(SEQ or SKP). SKP means
"skip sequential™ and enables you to start writing at any specific record.

For writing aKSDS or RRDS, if OPTCD contains any of the following, PUT stores
anew record in key sequence or relative record sequence:

OPTCD=(KEY,SKP,NUP) Skip, no update
OPTCD=(KEY ,DIR,NUP) Direct, no update
OPTCD=(KEY,SEG,NUP) Sequential, no update

Note that VSAM does not allow you to change akey in a KSDS (del ete the record and
write anew one). To change arecord, first GET it using OPTCD= UFD, change its
contents (but not the key), and PUT it, also using OPTCD=UFD. To write arecord

in ESDS, use OPTCD=(ADR,).

The ERASE Macro

The purpose of the ERASE macro isto delete arecord from a KSDS or an RRDS.
To locate an unwanted record, you must previously issue a GET with an RPL
specifying OPTCD=(UFD...).

[l abel] ERASE RPL=address or =(register)

For ESDS, acommon practice is to define a delete byte in the record. To "delete” a
record, insert a special character such as X'FF'; all programs that process the data set
should bypass all records containing the delete byte. Y ou can occasionally rewrite
the data set, dropping all deletes.

THE EXLST MACRO

If your ACB macro indicates an EXLST operand, code arelated EXLST macro. EXLST
provides an optional list of addresses for user exit routines that handle end-of—file and
error analysis. All operands in the macro are optional.

When VSAM detects the coded condition, the program enters your exit

routine. Register 13 must contain the address of your register save area. For example,

if you are reading sequentially, supply an end—of—data address (EODAD) in the EXLST
macro-see the ACB for VSMFILIN in Fig. 28-4.

Page 507 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

Namefield Operation Operands Column 72

[label] EXLST AM=VSAM, +
EODAD=address, +
LERAD=address, +
SYNAD=address

Here are explanations of the operands for EXLST:

VSAM
EODAD

LERAD

SYNAD

THE SHOWCB MACRO

Indicates aVVSAM control block.

Supplies the address of your erid-of-data routine. Y ou may aso read
sequentially backward, and VSAM enters your routine when reading
past the first record. The request return code for this condition is X'04'.

Indicates the address of the routine that analyzes logical errors that
occurred during GET, PUT, POINT, and ERASE. The request return
code for this condition is X'08.

Provides the address of your routine that analyzes physical 1/O errors
on GET, PUT, POINT, ERASE, and CLOSE. The request return code
for this condition is X'OC'.

Other operands are EXCPAD and JRNAD.

The original program in Fig. 284 contained an error that caused it to fail on a PUT
operation. The use of the SHOWCB macro in the error routine for PUT (R30PUT)
hel ped determine the actual cause of the error.

The purpose of SHOWCB isto display fieldsin an ACB, EXLST, or RPL.
Code SHOWCSB following a VSAM macro where you want to identify errors that
VSAM has detected. The SHOWCB in the PUT error routinein Fig. 28-4 is as follows:

FDBKWD DC F' O

AREA
FIELDS

LENGTH

Page 508

SHOANCB RPL=RPLI STOT, AREA=FDBKWD, FI ELDS=(FDBK) , LENGTH=4

Designates the name of a fullword where VSAM isto place an error code.
Tells SHOWCB the type of display; the keyword FDBK (feedback) causes

adisplay of error codes for request macros.
Provides the length of the areain bytes.

Chapter 28

Revised January 19, 2010

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

On afailed request, VSAM stores the error code in the rightmost byte of the fullword
area. These are some common error codes:

X'08 Attempt to store arecord with a duplicate key.

X‘0C’ Out-of-sequence or duplicate record for KSDS or RRDS.
X110 No record located on retrieval.

X‘1C’ No space available to store arecord.

Y our program can test for the type of error and display a message. For nonfatal errors, it
could continue processing; for fatal errors, it could terminate.

The original error in Fig. 28-4 was caused by the fact that the RPL macro RPLISTOT did
not contain an entry for RECLEN; the program terminated on the first PUT error, with
register 15 containingX'08' (a"logical error"). Insertion of the SHOWCB macro in the
next run revealed the cause of the error in FDBKWD: 00006C. Appendix K of the IBM
Supervisor manual explainsthe error (in part) asfollows: "The RECLEN value specified
in the RPL macro was [either] larger than the allowed maximum [or] equal to zero...."
Coding aRECLEN operand in the RPL macro solved the problem, and the program then
executed through to normal termination. One added point: Technically, after" each
SHOWCB, you should test register 15 for a successful or failed operation.

SAMPLE PROGRAM: LOADING A KEY-SEQUENCED DATA SET

The program in Fig. 28-4 reads records from the system reader and sequentially creates a
key-sequenced data set. A DEFINE CLUSTER command has allocated space for this
data set as INDEXED (KSDS), with three tracks, a4-byte key starting in position 0, and
an 80-byte record size. The program loads the entire data set and closes it on completion.
For illustrative (but not practical) purposes, it reopens the data set and reads and prints
each record. The PUT macro that writes records into the data set is:

PUT RPL=RPLI STOT

RPLISTOT defines the name of the ACB macro (VSMFILOT), the address of the output
record, and its length. Although the example simply duplicates the record into the data
set, in practice you would probably define various fields and store numeric values as
packed or binary.

The ACB macro defines VSMFILOT for keyed accessing, sequential processing, and
output. The DDNAME, VSAMFIL, in this example relates to the name for the data set
inthe DLBL job control entry (DD under OS).

For reading the data set, the GET macrois
GET RPL=RPLI STI N

RPLISTIN defines the name of the ACB macro (VSMFILIN), the addressin which
GET isto read an input record, and the record length.

Page 509 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

IDCAMS SYSTEM SERVICES

DELETE (VSAMFIL.ABEL) CLUSTER PURGE
IDCOBS0I ENTRY (C) VSAMPIL.AEEL DELETED
IDCOSS0I ENTRY (D) VSAMFIL.DATA DELETED
IDCOSS0I ENTRY (I) VSAMFIL.INDEX DELETED
IDCOOD1I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS O

DEFINE CLUSTER {NAME(VSAMFIL.ABEL)} -
TRACKS (3} - ’
VOLUME (SVSEQ3) -
INDEXED -

KEYS(4 0) -

RECORDSIZE(80 80)) -
DATA (NAME(VSAMFIL.DATA)) -
INDEX (NAME(VSAMFIL.INDEX))

IDHCOONLIT FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS O
IDCOOD2I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS O
// OPTION LINK,PARTDUMP,ROXREF,LOG

ACTION NOMAP
// EXEC BSSEMBLY,SIZB=256K

3 PRINT NOGEN,NODATA
4 * MAIN PROCESSING
E =
6 PROGVSM START
7 BALR 12,0 INITIALIZE
8 USING *,12 BASE REC &
9 LA 13,VSAMSAVE VEAM SAVERREAR
10. OPEN FILEIN,VSMFILOT
18 LTR 15,15 SUCCESSFUL OPEN?
20 BNZ R1OOPEN NO - TESMINATE
21 GET FILEIN,VSMREC READ 15T RECORD
28 AlOLOOP BAL €,BlOLOAD CREATE FILE
29 CET FILEIN,VSMREC READ NEXT
35 B AL0LOOP
37 RBO0EQF CLOSE FILEIN,VSMFILOT
46 LA 13, VSAMSAVE
47 OFEN FILEPRT,VSMPILIN
56 LTR 15,15 SUCCESSFUL OPEN?
57 BNZ R100PEN NO == TERMINATE
58 BAL 6,ClOPRINT _READ & PRINT VSAM FILE
60 ASOEOF CLOSE PILEPRT,VSMPILOT
59 EOJ RORMAL TERMINATION
73 = LOAD VSAM FILE
Td * [
75 B1OLOAD PUT RPL=RPLISTOT WRITE VS2M RECORD
82 ETR 15,15 SUCCESSFUL WRITE?
83 BNZ R30PUT NO --ERROR
54 ER 6 _ RETURN
BE * READ § PRINT VSAM FILE
87 *
88 ClOPRINT GET RPL=RPLISTIN '
95 LTR 15,15 SUCCESSFUL READ?
96 BNZ R40GET NO - TERMINATE
97 MVC PRREC,VSMREC
98 PUT FPILEFRT ,FRINT PRINT RECORD
104 B C10PRINT
Figure 28-4 L oading a key—sequenced data set
Page 510 Chapter 28 Revised January 19, 2010

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler

VSAM

lgﬁ* ERROR ROUTINES

107 =

108 R100OPEN MVI ERRCDE,C'O* OFEN ERROR

103 B RS0ODUMP

110 R30PUT MVI ERRCDE,C'P’ FUT ERROR

111 5T 15,5AVELS

112 SHOWCE RPL=RPLISTOT,AREA=FDEKWD,FIELDS= (FDEX) .LENGTH=4

164 CLOSE FILEIN,VEMFILOT:

173 B RY90DUME

174 R40GET MVI ERRCDE,C'G' GET ERROR

175 5T 15 ,.8AVELS

17¢ SHOWCE RPL=RPLISTIN,AREA=FDBREWD ,FI1ELDS=({FDEK) ,LENGCTH=4

228 CLOSE FILEPRT,VEMFILOT

237 R90DUMF EQU b

238 PPIMP ERRCDE,PRINT+133 ,

244 ECJ ABNOEMAL TERMINATION

248 *

248 * DECLARATIVES

250 =

252 FILEIN DEFIN ASQEQOF DEFINE INPUT FILE

278 FILEFRT DEFFR DEFINE FRINTER FILE

308 VSMFILOT ACB DDNAME=VSAMFIL , DEFINE VSAM O/F FILE +
MACRFP=(KEY,SEQ,.QUT) .

341 RFLISTOT RPL ACB=VEMFILOT, RPL FOR VSMFILOT +
AREA=VEMREC, +
AREALEN=80, +
RECLEN=80, +
OPTCD= (KEX,SEQ,NUP)]

371 VSMFILIN ACE DDNAME=VSAMFIL . DEFINE VSaM I/P FILE +
MACREP=(KET,8EQ,.IN), +
EXLST=EOFDCB

404 EOFDCB EXLST ECDAD=ASOEOF EOF EXIT FOR VSAM I/P

416 RPLISTIN REPL ACB~VEMEILIN, FPL FOR VSMFILIN +
AREA=VSMREC, +
AREALFN=80, +
OPTCD= (KEY , SEQ,NUP)

446 VSAMSAVE DS 18F V5aM SAVEARER

447 ERRCDE Dg X'Qor ERROR CODE

448 SAVELS DS F

449 FDBEWD DC p-ali L

450 VSMREC DS OCLED INPUT/OUTFUT RECORD

451 RECEEY DS CLO4 =

452 D& CL76& *

454 PRINT DS © O0CL133 PRINT RECCRD

455 DC X'ag" *

456 PREEC Do CL&ag* ' *

£57 DC CLSZ2" ' *

458 LTORG

459 =C*SSECPEN *

460 =C'SSBCLOSE!

461 =CLE ' IEQVTMS*

462 =CL8 ' SSBPDUMP*

463 =A{ERRCDE, PRINT+133)

464 =A{FILEIN)

465 =A(VEMREC}

466 = (RPLISTOT)

467 =A(RPLISTIN)

468 =A(FILEFRT)

469 =A(PRINT}

470 END PROGVSEM

// EXEC INKEDT,SIZE=128K

// DLBL VSAMFIL, *VSAMEIL.ABEL', , VSAM
/ EXTENT SIS008,SVSE03

/f BASSGN SIS008,X"303°

/ EXEC ,SIZE=128K

Figure28-4 L oading a key—sequenced data set (continued)

Page 511

Chapter 28

Revised January 19, 2010

Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

The ACB macro defines VSMFILIN for keyed access, sequential processing, and input.
The DDNAME, VSAMFIL, relates to the name for the data set in the DLBL job control
entry. Note that thereisan ACB and RPL macro for both input and output, but both
ACB macros specify the same DDNAME: VSAMFIL.

Error routines are for failures on OPEN, GET, and PUT. These rather primitive routines
supply an error code and the contents of the declaratives; in practice, you may want to
enlarge these routines. If you fail to provide error routines, your program may crash with
no clear cause.

During testing, you may have changed the contents of aVSAM data set and now want
to reload (re-create) the original data set. Except for updating with new keys, VSAM
does not permit overwriting records in adata set. You haveto use IDCAMSto DELETE
and again DEFINE the data set asfollows:

DELETE(dat a- set - nane) CLUSTER PURGE ..
DEFI NE CLUSTER(NAME(dat a- set - nane) ...)

Loading an ESDS

To convert the program in Fig. 19-4 from KSDS to ESDS, change DEFINE CLUSTER
from INDEXED to NONINDEXED and delete the KEY S and INDEX entries.

Change the ACB MACRF from KEY to ADR, and change the RPL OPTCD from
KEY to ADR - that's all.

KEYED DIRECT RETRIEVAL

Key-sequenced data sets provide for both sequentia and direct processing by key.

For direct processing, you must supply VSAM with the key of the record to be accessed.
If you use akey to access arecord directly, it must be the same length as the keysin the
data set (asindicated in the KEY S operand of DEFINE CLUSTER), and the key must
actually exist in the data set. For example, if you request arecord with key 0028 and
thereis no such record, VSAM returns an error code in register 15.

Using the data set in Fig. 19-4, assume that a program is to access records directly. A user
enters record key numbers viaaterminal, and the program is to display the record on the
screen. In this partial example, the RPL macro specifies the name (ARG) of the key to
bein a4-byte field named KEY FLD. These are the specific coding requirements for the
ACB, RPL, and GET macros:

For updating a KSDS record, change the MACRF from IN to OUT, and change the
OPTCD from NUP to UPD. GET the record, make the required changesto it (but
not the key!), and PUT the record using the same RPL.

Page 512 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

+

VSMFI LE ACB DDNAME=nane,
MACRF=(KEY, DI R, | N)
RPLI ST RPL ACB=VSMFI LE,
AREA=DCBREC,
AREALEN=80,
ARG=KEYFLD,
OPTCD=(KEY, DI R, NUP)
KEYFLD DS CL4
DCBREC DS CL80
[Accept a key nunber fromthe term nal]
WC KEYFLD, keyno
GET RPL=RPLI ST
LTR 15, 15
BNZ error
[Display the record on the screen]

+ + + +

SORTING VSAM FILES
Y ou can sort VSAM records into either ascending or descending sequence. Y ou must
first use DEFINE CLUSTER to allocate a vacant data set (NONINDEXED) for SORT to
write the sorted data set. Hereis atypical SORT specification:
/'l EXEC SORT, Sl ZE=256K
SORT FI ELDS=(1, 4, CH, A 9, 4, PD, D)
RECORD TYPE=F, LENGTH=(150)
| NPFI L VSANV
OUTFI L ESDS
END
/ *
SORT causes the SORT program to load into storage and begin execution.

SORT FIEL DS defines the fields to be sorted, indicated by major control to minor,
from left to right. In this example, the major sort field beginsin position 1 (the first
position), is 4 bytes long, isin character (CH) format, and isto be sorted in ascending
(A) sequence. The minor sort field begins in position 9, is 4 byteslong, isin packed (PD)
format, and is to be sorted in descending (0) sequence. The example could be a sort of
departments in ascending sequence, and within each department are employee salaries

in descending sequence.

RECORD TYPE indicates fixed (F) length and record length (150 bytes).

INPFIL informs SORT that theinput fileis VSAM; SORT can determine the type
of data set from the VSAM catalog.

OUTFIL definesthe type of output file, in this case entry-sequenced. This entry
should match the DEFINE CLUSTER for this data set, NONINDEXED.

Job control commands for SORTIN and SORTOUT provide the names of the data sets.
Since job control varies by operating system and by installation requirements, check
with your installation before attempting the SORT utility.

Page 513 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

VSAM UTILITY PRINT

IDCAMS furnishes a convenient utility program named PRINT that can print the
contents of aVSAM, SAM, or ISAM data set. The following provides the steps for
OS and for DOS:

0S: // STEP EXEC PGVEI DCAVS
PRI NT | NFI LE(fil ename) CHARACTER or HEX or DUWP
/~k
DCOS: // EXEC | DCAMS, SI ZE=256K

PRI NT | NFI LE(fil ename) CHARACTER or HEX or DUWP
/*

The options for PRINT indicate the format of the printout, in character, hexadecimal,
or both (DUMP prints hex on the |eft and character format on the right).

INFILE(filename) matches the name in the OS DD or DOS DLBL job statement with
any valid filename as long as the two areidentical. The DD or DLBL statement notifies
VSAM which data set isto print.

PRINT lists KSDS and ISAM data sets in key sequence and lists ESDS, RRDS, and
SAM data setsin physical sequence. Y ou can also print beginning and ending at a
specific record.

KEY POINTS
* A key-sequenced data set (KSDS) maintains records in sequence of key, such as
employee or part number, and is equivalent to indexed sequential access method.

* An entry-sequenced data set (ESDS) maintains records in the sequence in which they
were initially entered and is equivalent to sequential organization.

» A relative-record data set (RRDS) maintains recordsin order of relative record
number and is equivalent to direct file organization.

* For the three types of data sets, VSAM stores records in groups (one or more) of
control intervals. At the end of each control interval is control information that
describes the data records.

» Before physically writing (loading) recordsin aVSAM data set, you must first
catalog its structure. Access method services (AMS) enables you to furnish VSAM
with such details about the data set as its name, organization type, record length, key
location, and password (if any).

* VSAM furnishes two types of accessing, keyed and addressed, and three types of
processing, sequential, direct, and skip sequential.

* Themost common errorsin processing VSAM data sets occur because of the need to
match definitions in the program, job control, and the cataloged VSAM data set.

Page 514 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

S/370 Assembler VSAM

» The data-set-namein job control (such as CUSTOMER.INQUIRY) must agree with
the NAME(data—set—name) entry in DEFINE CLUSTER. This name isthe only one
by which VSAM recognizes the data set. VSAM relates the ACB DDNAME in the
program to the job control name and the job control name to the data-set-name.

» If adatasetiscataloged as KSDS, ESDS, or RRDS, each program must access it
accordingly.

* For KSDS, the length and starting position of the key in arecord must agree with the
KEY Sentry in DEFINE CLUSTER and, for direct input, with the defined
ARG in the OPTCD.

» Every program that references the data set defines the fields with identical formats
and lengths in the same positions; the actual field names need not be identical. You
may define as character any input field in arecord that the program does not
reference. The ssimplest practiceisto catalog all record definitions in the assembler
source library and COPY the definition into the program during assembly.

» After each OPEN, CLOSE, GET, PUT, and SHOWCSB, test register 15 for success or
failure, and use SHOWCB (as well as TESTCB) as a debugging aid.

Page 515 Chapter 28 Revised January 19, 2010
Copyright © 2009 by Edward L. Bosworth, Ph.D.

