Chapter 29: Operating Systems

Author’sNote: This chapter is copied almost verbatim from the material in
Chapter 21 of the textbook by Peter Abel. It isused by permission.

This chapter introduces material that is suitable for more advanced assembler programming.
The first section examines general operating systems and the various support programs.
Subsequent sections explain the functions of the program status word and the interrupt
system. Finally, thereis adiscussion of input/output channels, physical 10CS, and the
input/output system.

These topics provide an introduction to systems programming and the relationship between
the computer hardware and the manufacturer's software. A knowledge of these features can
be a useful asset when serious bugs occur and when a solution requires an intimate
knowledge of the system.

In an installation, one or more systems programmers, who are familiar with the computer
architecture and assembler language, provide .support for the operating system. Among the
software that IBM supplies to support the system are language translators such as assembler,
COBOL, and PL/I and utility programs for cataloging and sorting files.

OPERATING SYSTEMS

Operating systems were devel oped to minimize the need for operator intervention during the
processing of programs. An operating system is a collection of related programs that provide
for the preparation and execution of auser's programs. The system is stored on disk, and part
of it, the supervisor program, isloaded into the lower part of main storage.

Y ou submit job control commands to tell the system what action to perform. For example,
you may want to assemble and execute a source program. To this end, you insert job control
commands before and after the source program and submit it as ajob to the system. In simple
terms, the operating system performs the following steps:

1. Preceding the source program is ajob control command that tells the operating system to
assemble a program. The system loads the assembler program from a disk library into storage
and transfers control to it for execution.

2. The assembler reads and tranglates the source program into an object program and stores it
on disk.

3. Another job control command tells the system to link—edit the object program. The system
loads the linkage editor from adisk library into storage and transfers control to it for
execution.

4. The linkage editor reads and translates the object program, adds any required input/output
modules, and stores it on disk as an executable module.

5. Another job control command tells the system to execute the executable module. The
system loads the module into storage and transfers control to it for execution.

Page 516 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

6. The program executes until normal or abnormal termination, when it returns
processing control to the system.

7. A job command tells the system that thisis the end of the job, since ajob may
consist of any number of execution steps. The system then terminates that job and
prepares for the next job to be executed.

Throughout the processing, the system continually intervenes to handle all input/output,
interrupts for program checks, and protecting the supervisor and any other programs
executing in storage.

IBM provides various operating systems, depending on users' requirements, and they
differ in services offered and the amount of storage they require. These are some
major operating systems:

DOS Disk Operating System Medium-sized systems

DOS/VSE Disk Operating System Medium-sized systems with virtual storage
os/vVsl Operating System Large system

(OAVASY Operating System Large system

OS/IMVS Operating System Large system

Systems Gener ation

The manufacturer typically supplies the operating system on reels of magnetic tape, along
with an extensive set of supporting manuals. A systems programmer has to tailor the
supplied operating system according to the installation's requirements, such asthe
number and type of disk drives, the number and type of terminals to be supported, the
amount of processing time available to users, and the levels of security that are to prevail.
This procedure is known as systems generation, abbreviated as sysgen.

Operating System Organization

Figure 29-1 shows the general organization of Disk Operating System (DOS), on
which thistext islargely based. The three main parts are the control program,
System service programs, and processing programs.

Disk openiinz system
Control program System service programs Processing programs
Supervisor Job IFL Linkage Librarian Translators Utility User
eontrol editor pre P

| L

Source Relocatable Core imzge Froced
statement library library Library

Figure29-1 Disk Operating System Organization

Page 517 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Control Program

The control program, which controls all other programs being processed, consists
of initial program load (I PL), the supervisor, and job control. Under OS, the
functions are task management, data management, and job management.

IPL isaprogram that the operator uses daily or whenever required to load the supervisor
into storage. On some systems, this process is known as booting the system.

Job control handles the transition between jobs run on the system. Y our job commands
tell the system what action to perform next.

The supervisor, the nucleus of the operating system, resides in lower storage, beginning
at location X'200'. The system loads user (problem) programs in storage following the
supervisor area, resulting in at least two programs in storage: the supervisor program
and one or more problem programs. Only oneis executing at any time, but control
passes between them.

The supervisor is concerned with handling interrupts for input/output devices, fetching
required modules from the program library, and handling errors in program execution.
An important part of the supervisor is the input/output control system (I0CS), known
under OS as data management.

CPU bytes Fixed storage locations

1. Communications region
2. Channel scheduler

Supervisor 3. Storage protection
resident 4. Interrupt handling
areag 5. System loader

6. Error recovery routines
7. Program information block
8. 1fO devices controt table

e o e v —— e — — — T — — T —

Transient area 9. Transient area

Figure 29-2 Supervisor areas

Figure 29-2 (not an exact representation) illustrates the general layout of the supervisor
in main storage. Let's examine its contents.

Page 518 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

1. Communication Region. This area contains the following data:
LOCATION CONTENTS

00-07 The current date, as mm/dd/yy or dd/mm/yy

08-11 Reserved

12-22 User area, set to zero when a JOB command is read to provide
communication within a job step or between job steps

23 User program status indicator (UPSI)

24 -31 Job name, entered from job control

32-35 Address. highest byte of problem program area

36 -39 Address: highest byte of current problem program phase

40-43 Address: highest byte of phase with highest ending address

44 - 45 Length of label areafor problem program

2. Channel Scheduler. The channels provide a path between main storage and the
input/output devices for al /O interrupts and permit overlapping of program execution
with 1/O operations. If the requested channel, control unit, and device are available, the
channel operation begins. If they are busy, the channel scheduler placesitsrequestin a
gueue and waits until the deviceis available. The channel notifies the scheduler when
the I/O operation is complete or that an error has occurred.

3. Storage Protection. Storage protection prevents a problem program from erroneously
moving data into the supervisor area and destroying it. Under a multiprogramming
system, this feature also prevents a program in one partition from erasing a program in
another partition.

4. Interrupt Handling. Aninterrupt isasignal that informs the system to interrupt the
program that is currently executing and to transfer control to the appropriate supervisor
routine. A later section on the program status word covers this topic in detail.

5. System Loader. The system loader is responsible for loading programsinto main
storage for execution.

6. Error Recovery Routines. A specia routine hancl1es error recovery for each I/0
device or class of devices. When an error is sensed, the channel scheduler invokes
the required routine, which attempts to correct the error.

7. Program Information Block (PIB). The PIB contains information tables that the
supervisor needs to know about the current programsin storage.

8. 1/0 Devices Control Table. This area contains atable of 1/0 devicesthat relate
physical unit addresses (X'nnn’) with logical addresses (SY Sxxx).

9. Transient Area. This area provides temporary storage for less used routines that the
supervisor loads as required, such as OPEN, CLOSE, DUMP, end-of— job handling,
some error recovery, and checkpoint routines.

Page 519 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

System Service Programs
System service programs include the linkage editor and the librarian.

Linkage editor. The linkage editor has two main functions:

1. To include input/output modules. An installation catalogs I/O modules in the system
library (covered next). When you code and assemble a program, it does not yet contain
the compl ete instructions for handling input/output. On completion of assembly, the
linkage editor includes all the required I/O modules from the library.

2. Tolink together separately assembled programs. Y ou may code and assemble a
number of subprograms separately and link-edit these subprograms into one executable
program. The linkage editor enables datain one subprogram to be recognized in another
and facilitates transfer of control between subprograms at execution time.

Librarian. The operating system contains libraries on a disk known as SY SRES to
catalog both IBM programs and the installation's own commonly used programs and
subroutines. DOS/V S supports four libraries:

1. The source statement library (SSL) catalogs as a book any program, macro, or
subroutine still in source code. Y ou can use the assembler directive COPY to include
cataloged code into your source program for subsequent assembling.

2. Therelocatable library (RL) catal ogs frequently used modules that are assembled but
not yet ready for execution. The assembler directs the linkage editor to include 1/0
modules automatically, and you can use the INCLUDE command to direct the linkage
editor to include your own cataloged modules with your own assembled programs.

3. The coreimage library (CIL) contains phases in executable machine code, ready for
execution. The CIL contains; for example, the assembler, COBOL, PL/I, and other
trangator programs, various utility programs such as LINK and SORT, and your own
production programs ready for execution. To request the supervisor to load a phase from
the CIL into main storage for execution, use the job control command

/I EXEC phasename.

4. The procedure library (PL) contains cataloged job control to facilitate automatic
processing of jobs.

The OS libraries vary by name according to the version of OS, but basically the OS
libraries equivalent to the DOS source statement, relocatable, and core image are,
respectively, source library, object library, and load library, and they serve the same
functions.

Processing Programs
Processing programs are cataloged on disk in three groups:

1. Language trandlators that IBM supplies with the system include assembler, PL/I,
COBOL, and RPG.

2. Utility programs that IBM supplies include such special-purpose programs as disk
initialization, copy file-tofile, and sort/merge.

Page 520 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

3. User—written programs that usersin the installation write and that IBM does not
support. All the programsin this text are user—written programs. For example, the job
command // EXEC ASSEMBLY causes the system to load the assembler from the CIL
into an available area ("partition™) in storage and begins assembling a program. The job
command // OPTION LINK directs the assembler to write the assembled module on
SYSLNK intherelocatable library.

Once the program is assembled and stored on SY SLNK, the job command

/I EXEC LNKEDT tells the linkage editor to load the module from SY SLNK into
storage, to complete addressing, and to include I/O modules from the RL. Assuming that
there was no job command to catalog it, the linkage editor writes the linked phase in

the CIL in anon—catalog area. If the next job command is// EXEC with no specified
phase name, the supervisor |oads the phase from the non—catal og area into storage for
execution. The next program that the linkage editor links overlays the previous one in
the CIL non-catalog area.

The job command // OPTION CATAL instead of // OPTION LINK tells the system both
to link the program and to catalog the linked phase in the catalog area of the CIL. You
normally catalog production programsin the CIL and for immediate execution use the
job command // EXEC phase name.

MULTIPROGRAMMING

Multiprogramming is the concurrent execution of more than one program in storage.
Technically, a computer executes only one instruction at atime, but because of the fast
speed of the processor and the relative slowness of 1/0 devices, the computer's ability
to service a number of programs at the same time makes it appear that processing is
simultaneous. For this purpose, an operating system that supports multiprogramming
divides storage into various partitions and is consequently far more complex than a
single—job system.

The number and size of partitions vary according to the requirements of an installation.
One job in each partition may be subject to execution at the same time, although only one
program is actually executing. Each partition may handle jobs of a particular nature. For
example, one partition handles relatively short jobs of high priority, whereas another
partition handles large jobs of lower priority.

The job scheduler routes jobs to a particular partition according to its class. Thusa
system may assign class A to certain jobs, to be run in the first partition.

In Fig. 29-4, the job queue is divided into four classes, and main storage is divided into
three user partitions. Jobsin class A run in partition 1, jobsin classes B and C runin
partition 2, and jobsin class P run in partition 3.

Depending on the system, storage may be divided into many partitions, and ajob class
may be designated to run in anyone of the partitions. Also, a partition may be designated
to run any number of classes.

When an operator uses the IPL procedure to boot the system, the supervisor is loaded
from the CIL into low storage. The supervisor next loads job control from the CIL into
the various partitions. The supervisor then scans the system readers and terminals for
job control commands.

Page 521 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

FIXED STORAGE LOCATIONS
As mentioned earlier, the first X'200' (decimal 512)bytes of storage are reserved for use
by the CPU. Figure 29-3 lists the contents of these fixed storage locations.

AREA, dec.

BAABRRBERG

g§§§$$ﬁ$$$$¥$$w?
BEB& -

5
g

132-133
134-135
136-139
140-143
144147
148-149
150-151
152-155
156-159
168-171
172-175
176-179
185-187
216-223
224231

232.239
248-251
252-255
256-351
352-382
884447
448-511
512t

Hex addr

BEEBwo

=]
o

§0EBEyy BHBEREBERERERRRIIBBESESY

EC only

b MMMMNM

Function

Initfal program loading PSW, restart new PSW

Initfal program loading CCW1, restart cld PSW

Initial program loading CCW2

External old PEW

Supervisor Call old PSW

Program old PSW

Machine-check old PSW

Inpat/output old PSW

Channel status word (see diagram)

Channel address word (03 key, 47 zeros, 8-81 CCW address)
interval timer

External new PSW

Supervisor Czll new FSW

Program new PSW

Machine-check new PSW

Input/ocutput new PSW

CPU address assoc’d with external interxuption, or unchanged
CP1J address assoc’d with external interruption, or zeros
External interruption code

SVC interruption (0-12 zeros, 1314 ILC, 15:0, 16-31 code)
Program interrupt (0-12 zeros, 13-14 I.C, 15:0, 16-31 code)}
Translation exception address (0-7 zercs, 8-31 address)
Monitor class (0-7 zeros, 8-15 class number)

PER interruption code (0=3 code, 4=15 zeros)

PER address (0-7 zeros, 8-31 address)

Monitor code (0~7 zeros, 8-31 moenitor code)

Channel ID (-3 type, 4-15 model, 16—31 max, IOEL length)
/0 extended logout address (0—7 unused, 8-31 address)
Limited channel logout (see diagram)

I/0 address (0~7 zeros, 8-23 address)

CPU timer save area

Clock comparator save area

Machine-check interruption code

Failing processor storage address (0-7 zeros, 8-31 address)
Region code®

Fixed logout avea™

Floating-point register save area

General register save zrea

Control register save area

CPU extended logout area (size varies)

*Hayvaz:rmongmode]s. see sysiem library manuals for specific model
TLocation may be changed by programming (bits 828 of CR 15 specify address)
Figure29-3 Fixed Storage L ocations

Page 522

Chapter 29 Revised March 13, 2010

Copyright © 2010 by Edward L. Bosworth, Ph.D.

When ajob completes processing, the job scheduler selects another job from the queue
to replaceit. For example, if partition 1 isfree, the job scheduler in Fig. 29-4 selects
from the class A queue either the job with the highest priority or, if all jobs have the
same priority, thefirst job in the queue.

The system has to provide amore or less equitable arrangement for processing jobsin
each partition. Under time dlicing, each partition is alotted in turn atime slice of so many
milliseconds of execution. Control passes to the next partition when the time has expired,
the job iswaiting for an 1/0 operation to compl ete, or the job is finished.

Supervisor
Class A| job 1,job4,job 35 \ tion I
Partition
B| job7 (class A)
c| job2,job8 A\L Partition 2
(class B, C)
P job3,job 6
Job queue on disk P?:Ei“;f
Main storage

Figure 29-4 Job queue and partitions

VIRTUAL STORAGE

In a multiprogramming environment, alarge program may not fit entirely in a partition.
As a consequence, both DOSVS and OS/VS support avirtual storage system that divides
programs into segments of 64K bytes, which arein turn divided into pages of 2K or
(usually) 4K bytes. On disk, the entire program is contained as pages in a page data set,
and in storage VS arranges a page pool for as much of the program asit can store, as
shown in Fig. 29-5. As a consequence, a program that is 100K in size could run in a 64K
partition. If the executing program references an address for a part of the program that is
not in storage, VS swaps an unneeded page into the page data set on disk and pagesin
the required page from disk into the page pool in storage. (Actualy, VS swaps onto disk
only if the program has not changed the contents of the page.) The 16 control registers
handle much of the paging operations. Since a page from disk may map into any pagein
the pool, V'S has to change addresses; this process is known as dynamic address
trandation (DAT).

Disk

Main Memory

Page Pool Page Data Set

Figure 29-5: Page Pool

Page 523 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

When running a real-time application such as process control, a data communications
manager, or an optical scan device, you may not want VSto page it out. It is possible to
assign an area of nonpageable (real) storage for such jobs or use a"page fix" to lock
certain pages into real storage.

PROGRAM STATUSWORD: PSW

The PSW is adoubleword of data stored in the control section of the CPU to control an
executing program and to indicate its status. The two PSW modes are basic control (BC)
mode and extended control (EC) mode. A 0 in PSW bit 12 indicates BC mode, and a 1
indicates EC mode. EC mode provides an extended contral facility for virtual storage.
One of the main features of the PSW isto control the state of operation.

PROGRAM STATUS WORD (BC Mode)

Channel masks | B P"’]’:":?“"‘ CMWP Interruption code
0 G678 1112 15(16 23|24 31
wc| co| Frosam Instruction address
32 |34 |36 39|40 ' 47]48 55|56 63
0-5 Channel 0 to 5 masks 32-33 (ILC) Instruction length code
6 Mask for chanpel 6 and up 34-35 (CC) Condition eode
7 (E) External mask 36 Fixed-point overflow mask

12 (C-0) Basic control mode 37 Decimal overflow mask

13 (M) Machinecheck mask 38 Exponent underfiow mask
14 (W-1) Wait state 39 Significance mask

15 {PF-1) Problem state

FROGRAM STATUS WORD (EC Mode)

Protect’n Program
ORO0 OTIE kov CMWP |00 {CC) ™ ~5 0000 0000
0 718 1132 1516 18 |20 23|24 31
0000 0000 Instruction address
32 39]40 4748 55§56 63
1 (R) Program event recording mask 15 (P-1) Froblem state
% (T-1) Translation mode 18-19 (CC) Condition code
6 (I) Input/output mask 20 Fixed-point overflow mask
7 (E) External mask 21 Decimal overflow mask
12 (C-1) Extended control mode 22 Exponent underflow mask
13 (M) Machine-check mask 23 Significance mask

14 (W-1) Wait staite
Figure 29-6. Two Variants of the PSW (Program Status Word)

Page 524 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

[Note by ELB: In the original S/360 design, bit 12 of the PSW was the ASCI|I bit, with
settings to allow running the computer with either EBCDIC characters (PSW1, = 0) or
ASCII characters PSW1, =1.) The ASCII option was so little used that most system
managers were completely unaware that it existed. When the /370 design with support
for virtual memory was introduced, the designers needed a bit to indicate what was
essentialy “S/370 mode” rather than the older “ S/360 mode”. Bit 12 was reassigned.]

Users of the system have no concern with certain operations such as storage management
and allocation of 1/0 devices, and if they were allowed access to every instruction, they
could inadvertently access other users' partitions or damage the system. To provide
protection, certain instructions, such as Start 1/0 and Load PSW, are designated as
privileged.

The PSW format is the same in only certain positions for .each mode. Figure 29-6, just
above, illustrates the two modes, in which the bits are numbered 0 through 63 from left to
right. Some of the more relevant fields are explained next.

Bit 14: Wait state. When bit 14 is 0, the CPU isin the running state and executing
instructions. When bit 14 is 1, the CPU isin wait state; which involves waiting for an
action such as an 1/0 operation to be compl eted.

Bit 15: State. For both modes, 0 = supervisor state and 1 = problem state. When the
computer is executing the supervisor program, the bit is 0 and all instructions are valid.
When in the problem state, the bit is 1 and privileged instructions cannot be executed.

Bits 16-31: Program interrupt code (BC mode). When a program interrupt occurs, the
computer sets these bits according to the type. The following list shows the interrupt
codesin hex format:

0001 Operation exception

0002 Privileged operation exception

0003 Execute exception

0004 Protection exception

0005 Addressing exception

0006 Specification exception

0007 Dataexception

0008 Fixed—point overflow exception

0009 Fixed—point divide exception

000A Decimal overflow exception

000B Decimal divide exception

000C Exponent overflow exception

000D Exponent underflow exception

O0OE Significance exception

O000F Foating—point divide exception

0010 Segment tranglation exception

0011 Pagetrandation exception

0012 Trandlation specification exception

0013 Special operation exception

0040 Monitor event

0080 Program event (may be combined with another code)

Page 525 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Bits 34-35: Condition code. BC mode only; the condition code under EC modeisin bits
18-19. Comparisons and certain arithmetic instructions set this code.

Bits 40-63: Instruction address [Often called the PC, or Program Counter]. This area
contains the address of the next instruction to be executed. The CPU accesses the
specified instruction from main storage, decodes it in the control section, and executes it
in the arithmetic/logic section. The first 2 bits of a machine instruction indicate its length.
The CPU adds this length to the instruction address in the PSW, which now indicates the
address of the next instruction. For a branch instruction, the branch address may replace
the PSW instruction address.

INTERRUPTS
An interrupt occurs when the supervisor has to suspend normal processing to

perform a specia task. The six main classes of interrupts are as follows:

1. Program Check Interrupt. This interrupt occurs when the computer cannot execute an
operation, such as performing arithmetic on invalid packed data.
Thisisthe common type of interrupt when a program terminates abnormally.

2. Supervisor Call Interrupt. A problem program may issue a request for input/output or
to terminate processing. A transfer from the problem program to the supervisor requires
asupervisor cal (SVC) operation and causes an interrupt.

3. External Interrupt. An external device may need attention, such as the operator
pressing the request key on the console or a request for communications.

4. Machine Check Interrupt. The machine—checking circuits may detect a hardware error,
such as a byte not containing an odd number of on bits (odd parity). [Note by ELB:
Thisrefers to parity memory, in which an 8-bit byte is stored as 9 bits in memory, with
the extra bit (not transferred to the CPU) being the parity bit.]

5. Input/Output Interrupt. Completion of an 1/0 operation making a unit available or
malfunction of an 1/0 device (such as adisk head crash) cause this interrupt.

6. Restart Interrupt. Thisinterrupt permits an operator or another CPU to invoke
execution of a program.

The supervisor region contains an interrupt handler for each type of interrupt. On an
interrupt, the system alters the PSW as required and stores the PSW in afixed storage
location, whereit is available to any program for testing.

The PSW discussed to this point is known as the current PSW. When an interrupt occurs,
the computer stores the current PSW and loads a new PSW that controls the new
program, usually the supervisor. The current PSW isin the control section of the CPU,
whereas the old and new PSWs are stored in main storage, as the following indicates:

(2)_"""' New PSW Main
Storage

CPU | Current PSW

N
Old PSW

Page 526 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

The interrupt replaces the current PSW in thisway. (1) It stores the current PSW into
main storage as the old PSW, and (2) it fetches a new PSW from main storage, to become
the current PSW. The old PSW now contains in itsinstruction address the location
following the instruction that caused the interrupt. The computer stores the Program
Status Words in 12 doubleword locations in fixed storage; 6 are for old PSWsand 6 are
for new PSWSs, depending on the class of interrupt. There are eight bytes allocated for
each PSW; for this reason the following addresses appear to be decimal numbers.

Interrupt Type Old PSW New PSW
Restart 0008 0000
External 0024 0088
Supervisor Call 0032 0096
Program Old PSW 0040 0104
Machine Check 0048 0112
Input/Output 0056 0120

Let's trace the sequence of events following a supervisor interrupt. Assume that the
supervisor has stored the address of each of itsinterrupt routines as bits 40-63 of the
PSW that is stored in the address associated with its interrupt type. Loading the CPU
Program Status Word with the “New PSW” associated with an interrupt type essentially
starts the interrupt handler on the next instruction.

Remember also that when an instruction executes, the computer updates the instruction
address and the condition code in the current PSW (in the CPU) as required.

1. A program requests input from disk. The GET or READ macro contains a
SVC (Supervisor Call) to link to the supervisor [ELB: a part of the Operating
System] for input/output. Thisis asupervisor interrupt.

2. Theinstruction address in the current PSW contains the address in the
program immediately following the SV C that caused the interrupt. The CPU
stores this current PSW in the old PSW for supervisor interrupt, location 32.

The new PSW for supervisor interrupt, location 96, contains supervisor state
bit = 0 and the address of the supervisor interrupt routine. The CPU moves
this new PSW to the current PSW and is now in the supervisor state.

3. The PSW instruction address contains the address of the supervisor I/0
routine, which now executes. The channel scheduler requests the channel for
disk input.

4. To return to the problem program, the supervisor loads the old PSW from
location 32 back into the current PSW. The instruction links to the PSW
instruction address, which is the address in the program following the
original SVC that caused the interrupt. The system switches the PSW from
supervisor state back to problem state.

[ELB Note: This design reflects some older strategies that had yet to take full advantage
of dynamic memory organizations, based on use of the stack and heap.]

Page 527 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

In the event of a program check interrupt, the computer sets its cause on PSW bits 16-31,
the program interrupt code. For example, if the problem program attempts arithmetic on
invalid data, the computer senses a data exception and stores X'0007' in PSW bits 16-31.
The computer then stores the current PSW in old PSW location 0040 and |oads the new
PSW from 0104 into the current PSW. This PSW contains the address of the supervisor's
program check routine, which tests the old PSW to determine what type of program
check caused the interrupt.

The supervisor displays the contents of the old PSW in hexadecimal and the cause of the
program check (data exception), flushes the interrupted program, and begins processing
the next job. Suppose that the invalid operation isan MP [Multiply Packed] at |ocation
X'6A320'. Since MP is 6 bytes long, the instruction address in the PSW and the one
printed will be X'6A326'. Y ou can tell from the supervisor diagnostic message that the
error is a data exception and that the invalid operation immediately precedes the
instruction at X'6A326'.

CHANNELS

A channel is a component that functions as a separate computer operated by channel
commands to control 1/0 devices. It directs data between devices and main storage and
permits attaching a great variety of 1/0 devices. The more powerful the computer model,
the more channels it may support. The two types of channels are multiplexer and selector.

1. Multiplexer channels are designed to support simultaneous operation of more than one
device by interleaving blocks of data. The two types of multiplexer channels are byte-
multiplexer and block-multiplexer. A byte-multiplexer channel typically handles |ow-
speed devices, such as printers and terminals.

A block-multiplexer can support higher-speed devices, and its ability to interleave blocks
of data facilitates simultaneous I/O operations.

2. Selector channels, no longer common, are designed to handle high—speed devices,
such as disk and tape drives. The channel can transfer data from only one device a a
time, a process known as burst mode.

Each channel has a4-bit address coded as in the following example:
CHANNEL ADDRESS TYPE

0 0000 byte-multiplexer

1 0001 block-multiplexer
2 0010 block-multiplexer
3 0011 block-multiplexer
4 0100 block-multiplexer
5 0101 block-multiplexer
6 0110 block-multiplexer

A control unit, or controller, is required to interface with achannel. A channel is
basically device-independent, whereas a control unit is device—dependent.

Page 528 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

Thus a block-multiplexer channel can operate many type of devices, but adisk drive
control unit can operate only adisk drive. Figure 29-7 illustrates atypical configuration
of channels, control units, and devices.

- __/,-l
CPU and main annel Control
storage Ch 0 unit Console
Control Printer
unit
Channel 1 Channel 2 __/—‘

Control Control .
- - _x—r’;’m’

i ‘
Ty L et
E |

Figure 29-7: Channels, Control Units, and Devices

For example, acomputer uses a multiplexer channel to connect it to a printer's control
unit. The control unit has a4-bit address. Further, each device has a 4-bit addressand is
known to the system by a physical address. The device address is therefore a 12-bit code

that specifies:
DEVICE CODE
Channel 0CCC
Control unit UUUU
Device DDDD

If the printer's device number is 1110 (X'E’) and it is attached to channel 0, control unit 1,
then to the system its physical addressis 0000 00011110, or X'O1E'. Further, if two disk
devices are numbered 0000 and 0001 and they are both attached to channel 1, control unit
9, their physical addresses are X'190" and X'191', respectively.

This physical address permits the attaching of 2% , or 256 devices.

Symbolic Assignments

Although the supervisor references 1JO devices by their physical numbers, your programs
use symbolic names. Y ou may assign a symbolic name to any device temporarily or
(more or less) permanently, and a device may have more than one symbolic name
assigned. The operating system uses certain names, known as system logical units, that
include the following.

In addition, you may reference programmer logical units, SY SO00-SY Snnn.

Page 529 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

SYSIPT
The terminal, system reader, or disk device used as input for programs

SYSRDR
The terminal, system reader, or disk device used as input for job control for the system

SYSIN
The system name to assign both SY SIPT and SY SRDR to the same terminal, system
reader, or disk device

SYSLST
The printer or disk used as the main output device for the system

SY SPCH
The device used as the main unit for output

SYSOUT
The system name to assign both SY SLST and SY SPCH to the same output device

SYSLNK
The disk area used as input for the linkage editor

SYSLOG
The console or printer used by the system to log operator messages and job control
statements

SYSRES
The disk device where the operating system resides

SYSRLB
The disk device for the relocatable library

SYSSLB
The disk device for the system library

For example, you may assign the logical address SY S025 to a disk drive with physical
address X'170'". The supervisor stores the physical and logical addressesin an 1/0O devices
control tablein order to relate them. A simplified table could contain the following:

|/O Device Physical Address L ogical Units
Reader X00C SYSIPT, SYSRDR
Printer X'00E’ SYSLST

Disk Drive X170 SYSLNK, SY SRES, SY S025
Tape Drive X280’ SY S031, SY S035

A reference to SY SLST isto the printer, and areference to SY SLNK, SY SRES, or

SY S025, depending on its particular use, is to disk device X'170'. You may assignh a
logical address permanently or temporarily and may change logical addresses from job to
job. For instance, you could use an ASSGN job control command to reassign SY S035 for
aprogram from adisk device X'170' to another disk device X'l72'.

Page 530 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

/O LOGIC MODULES

Consider a program that reads a tape file named TAPEFL. The program would require a
DTFMT or DCB file definition macro to define the characteristics of the file and tape
device to generate alink to an I/O logic module. The assembler determines which
particular logic module, based on (1) the kind of DTF and (2) the specifications within
the file definition, such as device number, an input or output file, the number of buffers,
and whether processing isin awork area (WORKA) or abuffer (IOREG). In the
following example, the assembler has generated a logic module named DFFBCWZ (the
name would vary depending on specifications within the DTFMT).

Instructions: GET TAPEFL, TAPEREC Imperative macro
Declaratives: TAPEFLDTFMT ... File definition macro
I}JFFBCWZ
/0 modules: 1JFFBCWZ module I/O module included by
Yinkage editor
Jaob control: J/ ASSGN TAPEFL, X‘2871° Assign to physical address

When linking a program, the linkage editor searches for addresses in the external symbol
dictionary that the assembler generates. For this example, the ESD would contain entries
at least for the program name and UFFBCWZ. The linker accesses the named module
cataloged on disk (provided it was ever cataloged) and includesit at the end of the
assembled object program. One role of a system programmer is to define and catalog
these 1/0O modules.

On execution of the program, the GET macro links to the specified file definition macro,
DTFMT. This macro contains the address of the I/O logic module at the end of the object
program where the linker included it. The module, combined with information from the
DTFMT, contains al the instructions necessary to notify the supervisor as to the actua
type of 1/O operation, device, block size, and so forth.

The only remaining information is to determine which tape device; the supervisor derives
it from the job control entry, which in this example assigns X'281' as the physical

address. The supervisor then (at last) delivers the physical request for input via a channel
command.

For example, the printer module, PRMOD, consists of three letters (1JD) and five option
letters (abcde), as |JDabcde. The options are based on the definitions in the DTFPR
macro, as follows:

a RECFORM: FIXUNB (F), VARUNB (V), UNDEF (U)

b CILCHR: ASA (A), YES(Y), CONTROL (C)

o PRINTOV=YES and ERROPT=YES (B), PRINTOV=YES and
ERROPT not specified (Z), plus 14 other options

d IOAREAZ2: defined (1), not defined (2)

€ WORKA: YES (W), YESand RDONLY = YES (V), neither specified (2)

A common printer module for IBM control character; two buffers, and awork areawould be
IJIDFY ZIW. For one buffer, the moduleis IIDFY ZZW.

Page 531 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

PHYSICAL 10CS

Physical 10CS (PIOCS), the basic level of 10CS, provides for channel scheduling, error
recovery, and interrupt handling.. When using PIOCS, you write a channel program (the
channel command word) and synchronize the program with completion of the I/O
operation. Y ou must also provide for testing the command control block for certain
errors, for checking wrong—length records, for switching between 1/0 areas where two
are used, and, if records are blocked, for blocking and deblocking.

PIOCS macros include CCW, CCB, EXCP, and WAIT.

Channel Command Word (CCW)
The CCW macro causes the assembler to construct an 8-byte channel command word that defines
the I/0O command to be executed.

Name Operation | Operand

[LABEL] CCW command-code, data—address, flags, count—field

» command-code defines the operation to be performed, such as 1 = write, 2 = read,
X'09' = print and space oneline.

» data-address provides the storage address of the first byte where dataisto be read or
written.

« flag bits determine the next action when the channel completes an operation defined in a
CCW. You can set flag bitsto 1 to vary the channel's operation (explained in detail
later).

» count-field provides an expression that defines the number of bytesin the data block
that isto be processed.

Command Control Block (CCB)

Y ou define a CCB macro for each I/O device that PIOCS macros reference. The CCB
comprises the first 16 bytes of most generated DTF tables. The CCB communicates
information to PIOCS to cause required /O operations and receives status information
after the operation.

Name Operation | Operand

[LABEL] CCB SY Snnn, command-list—-name

* blockname is the symbolic name associated with the CCB, used as an old PSW for the
EXCP and WAIT macros.

* SY Snnn is the symbolic name of the 110 device associated with the CCB.
» command-list-name is the symbolic name of the first CCW used with the CCB.

Execute Channel Program (EXCP)

The EXCP macro requests physical 10CSto start an I/O operation, and PIOCS rel ates the block
name to the CCB to determine the device. When the channel and the device become available, the
channel programis started. Program control then returns to your program.

Name Operation | Operand

[LABEL] EXCP block—name or (1)

The operand gives the symbolic name of the CCB macro to be referenced.

Page 532 Chapter 29 Revised March 13, 2010

Copyright © 2010 by Edward L. Bosworth, Ph.D.

The WAIT Macro

The WAIT macro synchronizes program execution with completion of an 1/0O operation, since the
program normally requires its completion before it can continue execution. (When bit O of byte 2 of
the CCB for thefileis set to 1, the WAIT is completed and processing resumes.) For example, if you
have issued an EXCP operation to read a data block, you now WAIT for delivery of the entire block
before you can begin processing it.

Name Operation | Operand
[LABEL] WAIT block—name or (1)
CCW Flag Bits

Y ou may set and use the flag bitsin the CCW as follows:

* Bit 32 (chain dataflag), set by X'80', specifies data chaining. When the CCW has
processed the number of bytes defined in its count field, the I/O operation does not
terminate if thisbit is set. The operation continues with the next CCW in storage. You
may use data chaining to read or write datainto or out of storage areas that are not
necessarily adjacent.

In the following three CCWs, the first two use X'80' in the flag bits, operand 3, to specify
datachaining. An EXCP and CCB may then reference the first CCW, and as aresult, the
chain of three CCWs causes the contents of an 80-byte input record to be read into three
separate areas in storage: 20 bytesin NAME, 30 bytesin ADDRESS, and 30 bytesin
CITY.

DATCHAI N CCW 2, NAME, X' 80', 20 Read 20 bytes into NAME,
and chai n.

CCW |, ADDRESS, X' 80',30 Read 30 bytes to ADDRESS,
and chai n.

cow L, CaTY, X 00,30 Read 30 bytes into CTY,

and term nate.

* Bit 33 (chain command flag), set by X'40', specifies command chaining to enable the
channel to execute more than one CCW before terminating the I/O operation.
Each CCW appliesto a separate 1/O record.

The following set of Channel Command Words could provide for reading three input
blocks, each 100 bytes long:

COMCHAI N CCW 2, | NAREA, X' 40', 100 Read record-1 into
| NAREA, chai n.
CCW 2, | NAREA+100, X 40', 100 Read record-2 into
| NAREA+| 00, chai n.
CCW 2, | NAREA+200, X 00', 100 Read record-3 into
| NAREA+200, st op.

Page 533 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

* Bit 34 (suppress length indication flag), set by X'20, is used to suppress an error
indication that occurs when the number of bytes transmitted differs from the count in the
CCW.

« Bit 35 (skip flag), set by X'10', is used to suppress transmission of input data. The
device actually reads the data, but the channel does not transmit the record.

* Bit 36 (program controlled interrupt flag), set by X'08', causes an interrupt when this
CCW's operation is complete. (Thisis used when one supervisor SIO instruction executes
more than one CCW.)

* Bit 37 (indirect data address flag), as well as other features about physical I0CS, is
covered in the IBM Principles of Operation manual and the appropriate supervisor
manual for your system.

Sample Physical IOCS Program
The program in Fig. 29-8 illustrates many of the features of physical IOCS we have
discussed. It performs the following operations:

* At initialization, prints three heading lines by means of command chaining (X'40').
* Reads input records one at a time containing salesman name and company.

* Prints each record.

» Terminates on reaching end—of—file.

Note that the program defines a CCB/CCW pair for each type of record, and the
EXCP/WAIT operations reference the CCB name — INDEVIC for the reader, OUTDEV 1
for heading lines, and OUTDEV 2 for sales detail lines. Each CCB contains the name of
the I/O device, SY SIPT or SY SLST, and the name of an associated CCW: INRECD,
TITLES, and DETAIL, respectively.

LOC OBJECT CODE S5TMT SOURCE STATEMENT

1 PRINT NODATA , NOGEN
cooooo 2 PIOCSFRGC START 0 INITIALIZE
oDoODD 0530 3 BAIR 3,0 =

4 DSING *,3 *

[EXCP OUTDEV1 PERINT TITLES

10 WAIT OQUIDEVL *

17 AlLQOREAD EXCF INDEVIC READ RECORD

21 WAIT INDEVIC *
00002A D501 3076 3332 28 CLC RECORD(2),=C'/*' END FILE?
000030 4780 30SC 28 . BB AS00END TS
000034 D213 32B8 3076 31 MVC SURMOUT . SURNAME LOAD
000032 D213 32CD 3082 32 MVC SIVEROUT, GIVENAME * PRINT
000040 D21D 32E2 309E 33 MVC COMPOUT , COMPANY * LINE

3s EXCP OUTDEVZ2 PRINT

39 WAIT OGUTDEVZ2 *
0000Q5A 47F0 3014 45 B AlOOREAD RETURN

47 A900END EGJ END OF JOB

51 - ——

52 * DECLARATIVES

53 *

54 INDEVIC CCB SYSIPT, INRECRD I/P DEVICE
Qo070 C200007820000050 65 INRECRD CCW X*Q2' ,REECORD , X*20"', 80
000078 67 RECCRD QCL8O I1/F RECORD
Q00078 68 SURNAME DS CL20 *
oooosec 69 GIVENAME DS CLZ20 *
QO00AD 70 COMPANE DS CL40 *
Page 534 Chapter 29 Revised March 13, 2010

Copyright © 2010 by Edward L. Bosworth, Ph.D.

72 CUTDEV1 CCEB SYSLST,TITLES . O/P DEVICE
0000DE BBOOOODEE000000E S4 TITLES X*8B* ,*,X'60",1
COCCEO 1100Q0F840000085 85 CcCwW Z+11' ,PRIMARY ,X"40"' ,133
Q000EE 19C0017D40000Q085 86 CCW X'19° ,SECONDEY ,X"40",133
OOCCEFO0 1100020200000085 87 CCwW #*11* , TERTIARY, X'00" ,133
ooCoFs 89 PRIMARY DS QCL133 TITLE #1
0000F8 4040404040404040 90 nc CL37*
0Q011ED E340D640D7404040 s1 jnlad CL16'T O P SA5LE'
000120 E240D440C540D540 292 e CLBO"SE M E N o F
QOD17D 84 SECONDRY DS aCrizs TITLE #2
coo1i7k 4040404040404040 95 DO CL34" °*
00019F E3I40CE40C5404040 26 DC CL14'T H E W ES"
0CO01AD E340C540D540D540 S7 DC CL14*"T ER N R E*
OCO1EER C740C540D640D540 98 ne CL71'G X O N*
000202 100 . TERTIARY D3 OCL133 TITLE ¥3
000202 4040404040404040 101 DC CLzZ6" !
00021C EZE4D9DSC1DACS540 102 DC CL21 * SURNAME *
0002312 CTCO9ESCS5D540D5C1L 103 DC CL21 "GIVEN NAME*
000246 C3DED4D7CIDSES40 104 DC CL65 ' COMPANT *
106 OUTDEVZ CCB SYSLST, OUTRECRD QO/F DEVICE
000297 00
000298 0S0O00ZA0Z20000085 118 X'09' . DETATL ,X*20" 133
0Q02A0 120 DETATL ns OCL133 DETAIL
000220 4040404040404040 121 DC CLZ6" ' = LIME
0002BA 122 SURNQUT DS CL20
0002CE 40 123 DC CLox *
0002CE 124 GIVENOUT DS CL20
0002E3 40 125 DCc cLol* ¢
O002E4 126 COMPQUT DS CL30
000302 4040404040404040 127 DC CiL.35* ¢
000328 129 LTORG ,
Q00328 COOOOUCS 130 =3 ({QUTDEV1)
00032C 00000060 131 =2 (INDEVIC)}
000330 00000287 132 =2 (OUTDEVZ)
000334 615C i3s3 =Cr x
134 END PIOCSFRG
Qutput:-—
TO®P S ALESMEN oF
TEE WESTERN REGION
SURMNAME CGIVEN NaAME COMPANY
RUTH GEORGE HERMAN LASER CORF.
JOHNSON WALTER AMY ELECTRONICS
COLLINS EDDIE BMI
COBR TTRUS RAYMOND AUDIQ SHACK
SPEAKER TRIS PACKLETT HEWARD
STIMMONS AL VIDEQ DUMP
SISLER GEORGE COMPUTER HEAP
WAGNER HANS DIGITAL CORFP.
Figure 29-8: Physical IOCS
Page 535 Chapter 29 Revised March 13, 2010

Copyright © 2010 by Edward L. Bosworth, Ph.D.

KEY POINTS

* Systems generation (sysgen) involves tailoring the supplied operating system to the
installation's requirements, such as the number and type of disk drives, the number and
type of terminals to be supported, the amount of process time available to users, and the
levels of security that are to prevail.

* The control program, which controls al other programs being processed, consists of
initial program load (IPL), the supervisor, and job control. Under OS, the functions are
task management, data management, and job management.

* Initial program load (IPL) is a program that the operator uses daily or whenever
required to load the supervisor into storage. The system loader is responsible for loading
programs into main storage for execution.

* The supervisor resides in lower storage, beginning at location X'200'. The supervisor is
concerned with handling interrupts for input/output devices, fetching required modules
from the program library, and handling errors in program execution.

* Channels provide a path between main storage and the input/output devices and permit
overlapping of program execution with 1/0O operations. The channel scheduler handles
al 1/O interrupts.

» Storage protection prevents a problem program from erroneously moving data into the
supervisor area and destroying it.

* Aninterrupt isasignal that informs the system to interrupt the program that is currently
executing and to transfer control to the appropriate supervisor routine.

* The source statement library (SSL) catalogs as a book any program, macro, or
subroutine still in source code.

» Therelocatable library (RL) catal ogs frequently used modules that are assembled but
not yet ready for execution.

* The coreimage library (CIL) contains phases in executable machine code, ready for
execution.

» Multiprogramming is the concurrent execution of more than one program in storage. An
operating system that supports multiprogramming divides storage into various
partitions. One job in each partition may be subject to execution at the same time,
although only one program is actually executing.

» The PSW is stored in the control section of the CPU to control an executing program
and to indicate its status. The two PSW modes are basic control mode (BC) and
extended control (EC) mode.

* Certain instructions such as Start 1/0 and Load PSW are privileged to provide
protection against users' accessing the wrong partitions.

» An interrupt occurs when the supervisor has to suspend normal processing to perform a
special task. The supervisor region contains an interrupt handler for each type of
interrupt.

Page 536 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

* A channel is a component that functions as a separate computer operated by channel
commands to control 1/0 devices. It directs data between devices and main storage and
permits the attachment of avariety of 1/0 devices.

The two types are multiplexer and selector.

* The operating system uses certain names, known as system logical units, such as
SYSIPT, SYSLST, and SY SLOG. Programmer logical units are referenced as SY S000-
SY Snnn.

* Physical IOCS (PIOCS), the basic level of IOCS, provides for channel scheduling, error
recovery, and interrupt handling. When using PIOCS, you write a channel program (the
channel command word) and synchronize the program with completion of the I/0O
operation. .

» The CCW macro causes the assembler to construct an 8-byte channel command word
that defines the I/0O command to be executed.

Page 537 Chapter 29 Revised March 13, 2010
Copyright © 2010 by Edward L. Bosworth, Ph.D.

