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Chapter 13- The Instruction Set Architecture (ISA) 
 

The instruction set architecture (ISA) of a computer is the structure of the computer as seen 

by an assembly language programmer.  In this chapter, we look at the computer hardware as 

seen at the assembly language level, discuss addressing modes, and briefly discuss assembly 

language.  We shall then present and discuss a very simple assembly language. 

We specify that the computer to be studied is a stored program computer, as are all modern 

computers.  Such a computer executes a program that has been previously stored in the 

computer’s memory system, perhaps having been copied in from the disk.  Only very early 

computers, such as the ENIAC (1945), are not classified as stored program computers.  The 

program for the ENIAC was specified by a set of switches on one of its panel; in this design 

the memory and registers stored only data.  Some other early machines executed programs 

directly read from punch cards and not stored in memory.  At this point we insist that if the 

machine is not a stored program computer, it is ancient history and not to be studied. 

The computer to be discussed in these notes is called the “Boz–7”.  It is the seventh version 

of a design by your favorite author, who could think of nothing better to do than name it after 

himself.  The Boz–7 is a synthetic computer, purposely designed along a “minimalist” style, 

in order to keep it as simple as possible.  It is a bit of an odd mix, partly following the 

principles of RISC (Reduced Instruction Set Computer) design and partly introducing some 

more complex design features for the sake of illustrating a few other concepts. 

 

Address Space: 26-bit addressing with 32-bit data paths 

The Boz–7 series is designed for 32-bit data paths, general-purpose registers and a 26-bit 

address space.  Such a design requires some explanation. 

The memory comprises 2
26

 (64M = 67,108,864) 32–bit words.  Were it byte-addressable, it 

would be sized at 256 megabytes, quite small for a modern computer, but not silly.  Memory 

is divided logically into 64 pages, each of 2
20

 (1M = 1,048,576) 32–bit words.  Each program 

can access exactly one of these pages, the page corresponding to the page number in the 

Program Status Register at the time the program is running.  Obviously, the pages are 

numbered 0 through 63, with pages denoted by 6–bit binary numbers.  Page 0 will be 

reserved for the Operating System.  Only a program running with Memory Manager 

privileges can change the PSR, as this affects the page number. 

The previous paragraph carries an implication that we now state explicitly.  Those machine 

instructions that generate an address do so by computing a 20–bit unsigned integer. This 

address is an offset into the page assigned to the process.  As seen below, the circuitry to load 

the Memory Address Register extends this 20–bit address into a full 26–bit address. 

Later, we shall see that the physical organization of the memory does not match its logical 

organization.  The logical organization is a didactic trick to facilitate the introduction of a 

few issues related to operating system design.  The physical organization reflects the use of 

commercially available memory chips in the proposed memory. 
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The MAR is a 26–bit register that contains the address into physical memory.  This figure 

shows the mapping of 20-bit program addresses into 26–bit real addresses, using the six page 

number bits found in the PSR.  Bus B3 supplies the 20 low–order address bits to the MAR, 

these being copied from the 20 low–order bits of the IR (Instruction Register). 

 

 
Figure: Conversion of Program Addresses 

 

From the viewpoint of the program, all address registers are 20–bit registers.  This includes 

the Program Counter (PC) and the Stack Pointer (SP).  All address calculations, including 

indexed and indirect addressing are done modulo 2
20

 and yield an unsigned 20–bit binary 

number that is passed to the 20 low–order bits of the MAR.  This odd arrangement does serve 

to force separation of process address spaces; no process can access the memory allocated to 

another.  This is a convenient security feature, although it is a bit rigid. 

 

 
Figure: Program Addressing with the Page Structure 

To summarize the situation, each program issues 20–bit addresses (representable as 5 hex 

digits) that are offsets into a memory page of size 2
20

 (1,048,576) 32–bit words.  This is 

converted to a 26–bit address sent to the MAR for actual memory access.  For example, if the 

page number is 23 (hex 0x17) and the 20–bit address is 0x54321, the 26–bit address is 

0x1754321.  As this is a 26–bit address, the high–order hexadecimal digit is less than 4, so 

that the address can be considered as 28–bits with the first two bits forced to 00. 
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Specifications for the Boz–7 

Further specifications of the computer, called the Boz–7, are as follows. 

 1) It is a stored program computer; i.e., the computer memory is used to store 

  both data and the machine language instructions of the program under execution. 

 2) It is a Load/Store machine; only register loads and stores access memory. 

 3) The Boz–7 is a 32–bit machine.  The basic unit of data is a 32–bit word.  This 

  is in contrast to machines, such as the Pentium class, in which the basic data 

  unit is the byte (8 bits) although the basic integer size is usually 32 bits. 

 4) This is a two’s-complement machine.  Negative numbers are stored in the 

  two’s-complement form, so the arithmetic is said to be two’s-complement.  The 

  range for integer values in from – 2,147,483,648 to 2,147,483,647 inclusive. 

 5) Real number arithmetic is not supported.  We may envision the computer as 

  a typical RISC, with an attached floating point unit that we will not design. 

 6) The CPU uses a 26–bit Memory Address Register (MAR) to address memory. 

 7) The memory uses a 32–bit Memory Buffer Register (MBR) to transfer data to and 

  from the Central Processing Unit. 

 8) The CPU uses a 16–bit I/O Address Register (IOA) to address I/O registers. 

 9) The CPU uses a 32–bit I/O Data Register (IOD) to put and get I/O data. 

 10) The Boz–7 uses 20-bit addressing and the entire address space is occupied.  The 

  memory is 32–bit word-addressable, for a total of 2
20

 (1 048 576) words. It is not 

  byte-addressable.  One advantage of this addressing scheme is that we may ignore 

  the byte ordering problem known as Big Endian – Little Endian. 

 11) The Boz–7 has a 5–bit op-code, allowing for a maximum of 2
5
 = 32 different 

  instructions.  By design, not all op-codes have been assigned. 

 12) The Boz–7 uses isolated I/O with the dedicated instructions GET and PUT. 

 13) The Boz–7 has four addressing modes: direct, indirect, indexed, and  

  indexed-indirect.  In addition, two instructions allow immediate addressing. 

  Indexed-indirect addressing is implemented as pre-indexed indirect.  This decision 

  allows implementation of register indirect addressing, a fifth address mode. 

 14) The Boz–7 has eight general purpose registers, denoted %R0 through %R7 

  Each of these registers is a 32–bit register, able to hold a complete memory word. 

   %R0 is identically 0.  It is not used to store any number but the constant 0. 

   %R1 through %R7 is read/write registers, used to store results of computation. 

Each of the eight registers can be used as an index register or as the source operand for an 

instruction.  Only registers %R1 – %R7 can be changed by arithmetic or register load 

operations.  Attempts to change %R0 are undertaken for side effects only. 

 

NOTE: The reason for selection of eight registers and not more is that the 3–bit register 

select field fit neatly into the preferred instruction format, while a 4–bit field did not. 
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Program Status Register (PSR) 

Here is the structure of the 32–bit processor status register (PSR), also called the program 

status register.  Note that not all bits are assigned. 

 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Not presently assigned. 6–bit Page Number 

 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Security Flags V C Z N R = 00 I CPU Priority 

 

Bits 2 – 0 of the PSR specify a three-bit unsigned integer corresponding to the CPU priority.  

This unsigned integer corresponds to a CPU priority in the range 0 to 7 inclusive. 

I/O device priority is one of 4, 5, 6, or 7.  Levels 1, 2, and 3 are used for software interrupts, 

which are the preferred mechanism by which a user program will invoke services of the 

operating system. User programs almost always execute at priority 0. 

Bit 3 is the interrupt bit, used to allow or disallow the raising of interrupts by input/output 

devices.  If this bit is zero, then interrupts are blocked.  Such a setting may be required by the 

operating system in the initial processing of an interrupt to block other interrupts. 

Bits 5 – 4 of the PSR are reserved, with each bit hardwired to logic 0 in the current design.  It 

is common practice for computer designs to have reserved bits, as opposed to bits that are 

just not used.  In this design, reserving the bits allows for more priority levels in the future. 

Bits 9 – 6 of the PSR reflect the effect of the last arithmetic operation. 

 C Carry bit  the last operation generated a carry out. 

    Not a problem; useful for multi-precision arithmetic. 

 N Negative bit the result of the last operation was negative. 

 Z Zero bit  the result of the last operation was zero. 

 V Overflow Bit the last operation caused a numeric overflow. 

Question: How to set the N, Z, and C bits based on the last ALU operation. 

Answer: The control unit will do this as a part of executing the arithmetic. 

  These bits cannot be set by loading the PSR. 

Bits 15 – 10 of the PSR are used as security flags, allowing the operating system to assign 

privileges to other programs.  Specific privileges might include: access to I/O devices, 

memory management and process scheduling, and access to all files in the file system. 

The current design is more of a reaction to the UNIX user/super–user model in which a 

program has either no privileges or has every privilege.  At present, we shall not be more 

specific on assignment of these bits to privilege levels.  When the operating system runs in 

the UNIX “super–user” mode, it has privilege 6310 = 1111112. 

Bits 21 – 16 of the PSR determine which of the 64 memory pages is allocated to the process.  

The memory is divided into pages of 2
20

 words and the program can use only one of them. 

Bits 31 – 22 of the PSR are presently not assigned any function and may serve any number of 

uses in the future.  Because they are not reserved, system software may use them. 
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General comments on 32–bit words 

We shall use eight hexadecimal digits to represent the 32–bit binary values stored in the  

Boz–7 memory words.  This notation is used for character data, integer data, and instructions.  

We use bit numbering in which bit 31 is on the left and bit 0 is on the right, so that the bits as 

read from left to right are from the most significant to least significant. 

 

Character Data Format 

The Boz–7 will be viewed as storing character data in the 8–bit ASCII format or 16–bit 

UNICODE (if we are to be more modern).  Standard 8–bit ASCII data would be stored four 

characters to the memory word and manipulated four characters at a time.  Characters would 

be numbered in the word according to the following convention. 

Bits 31 to 24 23 to 16 15 to 8 7 to 0 

Character 3 2 1 0 

This course will focus on integer data.  It is not that character data are unimportant, it is just 

that we need simple examples so that we can focus on the hardware and not on the data. 

 

Integer Data Format 

The Boz–7 stores signed integers as 32–bit two’s-complement numbers.  The range of 

integers that can be stored and processed directly by the CPU is – 2,147,483,648 ( – 2
31

 )  to 

2,147, 483, 647 ( 2
31

 – 1), inclusive.  Other precision arithmetic ( 8–bit, 16–bit, and 64–bit) 

are not supported by this design, though they would be useful in a real computer. 

 

Real Number Format 

The Boz–7 is not designed to process real numbers, also called floating point numbers.  If it 

did, it would use IEEE–754 single-precision format and use an attached coprocessor to do the 

calculations.  In this regard, it would be typical of RISC–type processors in allocating 

floating point execution to an attached processor.  We shall ignore floating-point numbers. 

 

 

The Assembly Language of the Boz–7 

The assembly language of a computer represents the lowest level instructions that the 

computer can execute directly.  Some of us have to program computers in assembly language 

and most of us (thankfully) do not have that task.  The main issue in favoring a higher level 

language over assembly language is programmer productivity.  If a programmer can write 

only so many lines of code per day (there are good measures of this), then it is better that he 

or she write lines of code that translate into many assembly language instructions that if each 

line of code translates only into one such instruction. 

 

In computer architecture, we view assembly language statements as the “functional 

specifications” of the computer, in that each such statement indicates a specific action that 

the computer must complete.  The assembly language of this computer has been designed to 

present a typical collection of functions typically found on a modern machine.  Once we have 

stated what the computer must do, we design the computer to do exactly that. 
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The instructions in the assembly language of the Boz–7 are listed below, in numeric order of 

the op-codes.  Note that not all 32 op–codes are used in this version of the design.  The 

reader will note an unexplained gap in the operation code sequence.  This gaps will facilitate 

the design of the CPU control unit by considerably simplifying its circuitry. 

Op-Code Mnemonic Description 
00000 HLT Halt the Computer 

00001 LDI Load Register from Immediate Operand 

00010 ANDI Logical AND Register with Immediate Operand 

00011 ADDI Add Signed Immediate Operand to Register 

00100 NOP Not Yet Defined – At Present it is does nothing 

00101 NOP Not Yet Defined – At Present it is does nothing 

00110 NOP Not Yet Defined – At Present it is does nothing 

00111 NOP Not Yet Defined – At Present it is does nothing 

01000 GET Input to Register 

01001 PUT Output from Register 

01010 RET Return from Subroutine 

01011 RTI Return from Interrupt (Not Implemented) 

01100 LDR Load Register from Memory 

01101 STR Store Register into Memory 

01110 JSR Subroutine Call 

01111 BR Branch on Condition Code to Address 

10000 LLS Logical Left Shift 

10001 LCS Circular Left Shift 

10010 RLS Logical Right Shift 

10011 RAS Arithmetic Right Shift 

10100 NOT Logical NOT (One’s Complement) 

10101 ADD Addition 

10110 SUB Subtraction 

10111 AND Logical AND 

11000 OR Logical OR 

11001 XOR Logical Exclusive OR 

 

Privileged Instructions 

In a multi–user computer, some instructions must be reserved for use by the Operating 

System and its system programs.  These include access to I/O devices (our instructions are 

GET and PUT) to preclude the simultaneous use of such devices by more than one process.  

Other privileged instructions would be those to manipulate the Program Status Register and 

directly access the Stack Pointer.  The stack pointer is changed by both PUSH and POP 

instructions, which are not privileged; but it required O/S privilege to initialize its value. 

A modern assembler would convert a number of instructions to operating system calls, often 

called “traps”, “software traps”, or “software interrupts”.  These include: 

 HLT translated into a return to the Operating System (which terminates the 

  process, reallocates memory, and starts another process), 

 GET translated into a call to an Operating System routine to get input, and 

 PUT translated into a call to an Operating System routine to output data. 



Chapter 13 Boz–7 The Instruction Set Architecture 

Page 472 CPSC 5155 Last Revised on July 9, 2011 

 Copyright © 2011 by Edward L. Bosworth, Ph.D.  All rights reserved 

Addressing Modes 

The Boz–7 computer may be said to support five addressing modes: immediate addressing 

and four true addressing modes, which are direct, indirect, indexed, and indexed-indirect.  As 

this is a Load/Store machine, these modes are limited to certain instructions, specifically the 

following four instructions that will be used to illustrate the addressing modes 

 LDI Load Register Immediate 

 ADDI Add Register Immediate 

 LDR Load Register from Memory 

 STR Store Register to Memory 

 

Of these instructions, only the first two can use immediate addressing.  Only the second two 

instructions can use the other four addressing modes to address memory.  As an aside, we 

shall see that the I/O instructions (discussed below) can be considered to use direct 

addressing in that the argument specifies the address of the I/O register.  However, we note 

that these instructions do not address memory and so give them minimal coverage here. 

 

One of the main differences between a RISC device, such as our computer, and a CISC 

device such as the VAX–11/780 (now obsolete) is that the latter can issue arithmetic 

commands that involve the memory directly; such as ADD X, Y to add directly the contents 

of the two memory locations and place the result into one of them.  In our computer, only a 

general–purpose register can be the target of an ADD instruction, and the operands must be 

either both registers or one register and an immediate operand.  This is the major design 

constraint of a load/store architecture.  It has been discovered that the increase in CPU 

performance more than pays for the inconvenience of this design constraint. 

 

To differentiate the immediate address mode from other address modes, let’s consider a 

simple instruction set with two modes of addressing (direct and immediate) and a single 

accumulator, which is loaded by the instruction called LOAD.  What does the instruction 

LOAD 100 do?  In immediate mode, the register is loaded with the value 100.  Thus we see 

that the immediate mode should not be called an address mode, as no memory address is 

used; the argument is coded immediately in the instruction.  In direct mode, the register is 

loaded with the value of the memory word at address 100. 

Immediate Addressing 

Most computer architectures call for immediate instructions to have the argument encoded 

directly within the 32–bit machine word representing the instruction.  In these designs, 

immediate instructions do not reference computer memory to access arguments and thus 

differ from other addressing modes in which the machine instruction encodes an address for 

an argument in main memory.  One notable difference is found in the ISA (Instruction Set 

Architecture) for the IBM mainframe series (S/360, S.370, z/9, z/10, etc.) in which an 

immediate instruction has two operands, one of which is a memory reference and one of 

which is encoded within the instruction.  We shall not use that type of instruction here. 

In the Boz–7, the lower order 20 bits of the machine instruction (bits IR19 – IR0) are used by 

many instructions to store either the argument (immediate addressing) or an address used to 

locate the argument in memory (other addressing modes). 
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I/O Device Register Addressing 

The two I/O instructions, GET and PUT, reference I/O devices by a 16–bit address on the I/O 

bus, which is separate from the memory bus.  The MAR is not involved in this addressing, as 

it uses a register named IOA that accesses the I/O device registers.  As indicated above, this 

type of addressing can be viewed as direct addressing, except that the term is reserved for 

discussions of memory addressing.  The use of device registers to access I/O devices is 

explained in the chapter on Input/Output. 

 

Memory Addressing 

It should be understood that only four instructions actually compute memory addresses.  

These four instructions can use any of the available addressing modes. 

 LDR and STR  the address of the argument. 

 BR and JSR  the address of the jump target. 

 

The Boz–7 computer may be said to support five addressing modes, which are direct, 

indirect, register-indirect, indexed, and indexed–indirect.  These addressing modes are built 

around two primitive operations. 

 Indirection: This is similar to the use of pointers in some modern languages. 

 Indexing: This is similar to the use of indices in accessing arrays. 

 

We note that there are two possible varieties of indexed–indirect addressing, depending on 

whether the indexing is done first or the indirection is done first.  Generally speaking, we 

may view these two in terms for describing higher–level languages as follows. 

 Pre–indexed indirect  an array of pointers. 

 Post–indexed indirect  a pointer to an array. 

Many computers will support both modes, but the Boz–7 computer supports only  

pre-indexed indirect.  This is due to the design requirement that the CPU be simple. 

 

The four true addressing modes are constructed from these two primitives, according to the 

following table. 

 

 Indexing Not Used Indexing Used 

Indirection Not Used Direct Addressing Indexed Addressing 

Indirection Used Indirect Addressing Indexed-Indirect Addressing 

 

All address calculations are performed modulo 2
20

 (modulo 1048576), so that no addresses 

outside the permissible range of memory addresses are generated.  All addresses are 

interpreted as unsigned 20–bit integers. 

 

When bits 19 through 0 of the IR form an immediate address, they are interpreted as an  

20–bit integer; either unsigned (for the ANDI) or two’s–complement for the LDI and ADDI.  

Specifically the ranges are: 

 ANDI  0 to 2
20

 – 1, representable as five hexadecimal digits, but best  

   viewed as a collection of twenty Boolean bits with no numeric value. 

 LDI, ADDI – 2
19

 to 2
19

 – 1, or – 524, 288 to 524, 287. 
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Effective Address 

Each of the four true addressing modes references a word in memory.  We say that each of 

these modes gives rise to an effective address, that is the address of the operand being 

indicated by the specified mode.  We use the following memory lay-out as an aid in our 

discussion of the addressing modes and the corresponding effective addresses.  For each of 

the examples, we consider the LDR instruction that loads the accumulator from the location 

indicated by the effective address. 

 

In what is below, we let the symbol Z stand for 0x0A, or 10 in decimal.  We assume that 

memory in the vicinity of this address is laid out in the following map, and that the contents 

of register 3 are 7; denoted by (%R3) == 7. 

 

Address 5 6 7 8 9 A B C D E F 10 11 

Contents 11 32 2C 1E 56 5 7A 10 3 F E D 8 

Figure: Sample Address Map (All values are hexadecimal) 

 

In immediate addressing, there is no access to memory and no effective address.  The effect 

of the instruction LDI %R1, Z is the same as LDI %R1, 10; register %R1 gets the value 10. 

 

We use the idea of an effective address as a part of determining the effect of the instruction.  

For register load instructions, the effect of the instruction is that the register has a given value 

stored into it.  For the true addressing modes, this value depends on the effective address.  If 

we use the term “EA” to represent effective address, what happens in the four true addressing 

modes is that the target register gets the contents of Memory[EA]. 

LDR: Register  M[EA] 

A word of caution is now in order.  We shall discuss assembly language statements such as 

LDR %R1, Z, in which Z is considered as an address.  This is in contrast to high-level 

language statements such as X = Z, in which Z is the value stored at some address.  For a 

high-level language, the compiler associates a memory location with each variable, so that 

the variable Z is associated with an address, z, and we retrieve Memory[z]. 

 

Direct Addressing 

LDR %R1,  Z 

Recall that Z is an address, not the value stored at that address. 

 

For direct addressing the effective address is EA = Z 

 

The effect is %R1  M[ Z ] 

Here %R1 gets M[0x0A] = 5, after the register load %R1 == 5. 
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Indirect Addressing 

LDR %R1,  * Z 

 

The effective address is EA = M[Z] = M[0x0A] = 5 

The effect is %R1  M[ M[Z] ] = M[ M0x0A] ] = M[5] = 11 

Here %R1 gets M[5], after the register load %R1 == 11 

 

Indexed Addressing 

LDR %R1,  Z, 3 

The effective address is EA = Z + (%R3) = A + 7 = 11 

The effect is %R1  M[ Z + (%R3)] = M[0xA + 7] = M[0x11] = 8 

Here %R1 gets M[0x11]; after the register load %R1 == 8 

 

Register-Indirect Addressing 

LDR %R1, *(3) 

This occurs when the address Z = 0.  In this case the register holds the effective address. 

The effective address is EA = (%R3) = 7. 

The effect is %R1  M[ (%R3) ] = M [7] = 2C. 

Here %R1 gets M[0x11]; after the register load %R1 == 2C 

 

Indexed-Indirect Addressing 

LDR %R1,  * Z, 3 

There are two types of indexed-indirect addressing, depending on the order of operations. 

 In preindexed-indirect addressing, the indexing is done first, then the indirection. 

 In postindexed-indirect addressing, the indirection is done first, then the indexing. 

 

Preindexed-Indirect 

The effective address is EA = M[Z + (%R3)] = M[0x0A + 0x07] = M[0x11] = 8 

The effect is %R1  M[ M[ Z + (%R3)]] = M[0x08] = 0x1E. 

Think of this as an array of pointers.  The address Z + (%R3) refers to an array entry that is 

used as a pointer to the addressed entry. 

 

Postindexed-Indirect 

The effective address is EA = M[Z] + (%R3) = M[0x0A] + 7 = 11 = 5 + 7 = C 

The effect is %R1  M[ M[ Z] + (%R3)] = M[0x0C] = 10. 

Think of this as a pointer to an array.  The address Z holds a pointer to an array at address 

M[Z].  This array is indexed by %R3. 

 

It is important for the student to understand the difference between the two varieties of 

indexed-indirect addressing.  Many computers will implement both types of addressing, but 

the Boz–7 implements only one, in order to simplify the design. 

 

The Boz–7 design implements more addressing modes than a typical RISC design.  This is 

due to its use as a teaching tool and the need to discuss these addressing modes. 
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Syntax of the Assembly Language 
We now characterize the syntax of each type of assembly language statement as used in the 

Boz–7 computer.  One reason to do this is to keep the instructor from getting confused. 

 

Immediate Operations 

The syntax of the immediate operations is quite simple. 

 Syntax Example 

 LDI %Rn, value LDI %R3, 100 

 ANDI %Rn, value ANDI %R5, 0xFFA08 -- Bit masking is easier in hexadecimal. 

 ADDI %Rn, value ADDI %R5, 200 

 NOP NOP   -- Not much to say on this one. 

 

It is expected that the following operations will be common enough to warrant syntactic 

sugar in the assembly language. 

 LDI %Rn,    0  Clear the register 

 ADI %Rn,    1  Increment the register 

 ADI %Rn, – 1  Decrement the register 

 

Input / Output Operations 

 Syntax   Example 

 GET %Rn, I/O_Register GET %R2, XX Load the general-purpose register from 

        the I/O device register. 

 PUT %Rn, I/O_Register PUT %R0, YY Store the contents of register into the  

        I/O device register.   

 

Load/Store Operations 

The syntax of these is fairly simple.  For direct addressing we have the following. 

 Syntax    Example 

 LDR %Rn, address  LDR %R3, X  Loads %R3 from address X 

 STR %Rn, address  STR %R0, Z  Loads %R0 into address Z 

        This clears address Z. 

Other variants of the syntax are illustrated in the discussion on addressing modes. 

 

Branch 

The syntax of this instruction, and its variants, is quite simple. 

 Syntax   Example 

 BR address  BRU W Note that this can use all addressing modes. 

Other variants of the syntax are illustrated in the discussion on addressing modes.  The use of 

condition codes for conditional and unconditional branching is explained in the section on 

syntactic sugar.  In this example BRU W is assembled as BR W with condition code = 000. 
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Subroutine Call and Return 

 Syntax   Example 

 JSR address  JSR W  Note that this can use all addressing modes. 

 RET   RET  The instruction does not take an argument. 

 RTI   RTI  Not yet implemented, this takes no argument. 

 

Unary Register (These instructions use one source register, hence the name “unary”.) 

 Syntax     Example 

 Op, Destination, Source, [Count] LLS %R5, %R6, 3 

      NOT %R2, %R1 

 

The NOT operation does not take a count.  The shift operations take a count, with the shift 

count defaulting to one if it is not provided.  Shift by 0 is the same as a copy. 

 

The restriction on this class of instruction is that the count, if used, must be a constant 

number known at the time that the assembler is run.  As the registers are 32–bit, the counts 

are evaluated modulo 32.  Constants and defined numbers are allowable in the instruction, 

but variables are not provided for in the syntax.  Shifting by a count stored in a variable 

would be implemented using a looping structure. 

 

A side effect of this constraint is that the right circular shift by a fixed amount may be 

translated by the assembler into an equivalent left circular shift. 

 

 

Binary Register (These instructions use two source registers, hence the name “binary”) 

 Syntax      Example 

 Op, Destination, Source_1, Source_2  ADD %R3, %R2, %R1 

 

Note that the subtract operation is the only one for which the order of the source registers is 

important.  SUB %R3, %R2, %R1 causes %R3  (%R2) – (%R1). 

 

%R0 as a Source Register 

 

Register %R0 is often used as a “source of 0”, a way to place the constant value 0 in another 

register or into a memory location. 

 

 

%R0 as a Destination Register 

 

Any operation that used register zero (%R0) as a destination in effect just discards the results.  

One use would be to force a arithmetic operation with the only goal of setting the sign bits. 

As an example, we might say SUB %R0, %R1, %R2 to get the sign of (%R1) – (%R2) 

without storing the results of the subtraction. 
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Syntactic Sugar 

Syntactic sugar, as applied to assembly language, refers to instructions that appear in the 

assembly language that are assembled as other instructions.  This translation is performed by 

the assembler, which is the software program that emits the machine code.  Our assembly 

language has a number of instructions that fall under this category.  Here are some examples. 

 

Syntactic Sugar Assembled As Comments 
CLR %R2 LDI %R2, 0 Clears the register 

CLW X STR %R0, X Clears the word at address X 

INC %R2 ADI %R2,  1 Increments the register 

DEC %R2 ADI %R2, -1 Decrements the register 

 

NOP  LLS %R0, %R0, 0 No-Operation: Does Nothing 

 

RCS %R3, %R1, 3 LCS %R3, %R1, 13 Right circular shift by N is 

   the same as left circular by 

   32 – N.  The shift count must 

   be a constant number. 

 

DBL %R2 LLS %R2, %R2, 1 Left shift by one is the 

   same as a multiply by 2. 

 

MOV %R2, %R3 LSH %R2, %R3, 0 Shift by 0 is a copy. 

 

NEG %R4, %R5 SUB %R4, %R0, %R5 Subtract from %R0  0 is 
   the same as negation. 

 

TST %R1 SUB %R0, %R1, %R0 Compares %R1 to zero by 

   subtracting %R0 from it and 

   discarding the result. 

 

CMP %R1, %R2 SUB %R0, %R1, %R2 Determines the sign of 

   (%R1) – (%R2), discarding 

   the result. 

 

BRU  BR 000 Branch always 

BLT  BR 001 Branch if negative 

BEQ  BR 010 Branch if zero 

BLE  BR 011 Branch if not positive 

BCO  BR 100 Branch if carry out is 0 

BGE  BR 101 Branch if not negative 

BNE  BR 110 Branch if not zero 

BGT  BR 111 Branch if positive 

 

BNS  BR 001 Same as BLT. 

   Used by I/O operations, in 

   which a negative status 

   indicates an error. 
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More Comments on the Assembly Language 

We now discuss the specifics of the syntax of the assembly language and show how the fields 

in the IR (Instruction Register) are used to specify the precise operation.  The IR is a 32–bit 

register used to hold the instruction being executed. 

This is a Load/Store RISC machine.  Only Load Register and Store Register instructions 

access the memory.  The only instructions that deal with memory addresses are the register 

load and store instructions, the branch (jump) instructions, and the subroutine call.   

Immediate Addressing 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

Op–Code  Destination 

Register 

Source 

Register 

Immediate Argument 

Op–Code  00000 NOP Halt 

  00001 LDI Load Immediate (Does not use Source Register) 

  00010 ANDI Immediate logical AND 

  00011 ADDI Add Immediate 

In these instructions, the source register most commonly will be the same as the destination 

register.  While there is some benefit to having a distinct source register, the true motivation 

for this design is that it simplifies the logic of the control unit. 

The most common immediate instructions will probably be the following. 

  LDI %RD, 0  -- Load the register with a 0. 

  LDI %RD, 1  -- Load the register with a 1 

  ADDI %RD, %RD,    1 -- Increment the register 

  ADDI %RD, %RD, – 1  -- Decrement the register 

Input/Output Instructions 

This design calls for isolated I/O, so it has dedicated input and output instructions. 

Input 

Op-Code 01000 GET Get a 32–bit word into a destination register from an input. 

 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 – 0 

0 1 1 0 0  Destination 

Register 

Not Used Not Used I/O 

Address 

 

Output 

Op-Code 01001 PUT Put a 32–bit word from a source register to an output register. 

 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 – 0 

0 1 0 0 1  Not Used Source 

Register 

Not Used I/O 

Address 

 

Note that these two instructions use different fields to denote the register affected.  This 

choice will simplify the control circuit.  All unused bits are assumed to be 0. 
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Memory Addressing 

The next four instructions (LDR, STR, BR, and JSR) can use memory addressing.  The first 

two use the memory address for a data copy between a specific register and memory.  The 

next two use the memory address as the target location for a jump. 

 

The generic structure of these instructions is as follows. 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

Op–Code I bit Register/Flags Index Address 

The contents of bits 25 – 23 depends on the instruction. 

 

The Real Reason for %R0  0 

We now discuss an addressing trick that is one of the real reasons that we have included a 

general–purpose register that is identically 0.  What we are doing is simplifying the control 

unit by not having to process non-indexed addressing; that is, direct or indirect.  Note that 

bits 22 – 20 of the IR specify the index register to be used in address calculations. 

 

When the I-bit (bit 26) is zero, we will call for indexed addressing, using the specified 

register.  Thus the effective address is given by EA = Address + (%Rn), where %Rn is the 

register specified in bits 22 – 20 of the IR.  But note the following 

 If Bits 22 – 20 = 0, we have %R0 and EA = Address + 0, thus a direct address. 

 

When the I-bit is 1, we have the same convention.  Indexed by %R0, we have indirect 

addressing, and indexed by another register, we have indexed-indirect addressing. 

The “bottom line” on these addresses is shown in the table below. 

 

 IR22-20 = 000 IR22-20  000 

IR26 = 0 Indexed by %R0 (Direct) Indexed 

IR26 = 1 Indirect, indexed by %R0 (Indirect) Indexed-Indirect 

 

 

Load Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

0 1 1 0 0 I 

bit 

Destination 

Register 

Index 

Register 

Address 

 

Here the I bit can be considered part of the opcode, if desired. 

 011000 Load the register using direct or indexed addressing 

 011001 Load the register using indirect or indexed-indirect addressing 

 

For a load register operation, bits 25 – 23 specify the destination register.  If the destination 

register is %R0, no register will change value.  While this seems to be a “no operation”, it 

does set the condition codes in the PSR and might be used solely for that effect. 
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Store Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

0 1 1 0 1 I 

bit 

Source 

Register 

Index 

Register 

Address 

For a store register operation, bits 25 – 23 specify the source register.  If the source register is 

%R0, the memory at the effective address will be cleared. 

 

Subroutine Call 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

0 1 1 1 0 I bit Not 

Used 

Index 

Register 

Address 

 

Branch 

31 30 29 28 27 26 25 24 23 22 21 20 19 – 0 

0 1 1 1 1 I bit Branch 

Condition 

Index 

Register 

Address 

The condition code field determines under which conditions the Branch instruction is 

executed.  The eight possible options are. 

 Condition Action 

 000 Branch Always  (Unconditional Jump) 

 001 Branch on negative result 

 010 Branch on zero result 

 011 Branch if result not positive 

 100 Branch if carry-out is 0 

 101 Branch if result not negative 

 110 Branch if result is not zero 

 111 Branch on positive result 

 

Return from Subroutine / Return from Interrupt. 

31 30 29 28 27 26 – 0 

Op–Code Not Used 

 

Op–Code =  01010 RET Return from Subroutine 

  01011 RTI Return from Interrupt (Not presently implemented) 

 

Neither of these instructions takes an argument or uses an address, as the appropriate 

information is assumed to have been placed on the stack. 
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Register-to-Register Instructions 

Unary Register-To-Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0 

Op Code  Destination 

Register 

Source 

Register 

Shift Count Not 

Used 

 

Opcode =  10000 LLS Logical Left Shift 

  10001 LCS Circular Left Shift 

  10010 RLS Logical Right Shift 

  10011 RAS Arithmetic Right Shift 

  10100 NOT Logical NOT (Shift count ignored) 

 

NOTES: 1. If (Count Field) = 0, a shift operation becomes a register move. 

  2. If (Source Register = 0), the operation becomes a clear. 

  3. Circular right shifts are not supported, because they may be  

   implemented using circular left shifts. 

  4. The shift count, being a 5 bit number, has values 0 to 31 inclusive. 

 

The last topic for discussion is the binary register-to-register operations.  By “binary” we do 

not refer to binary arithmetic, but to arithmetic operators, such as addition; those take two 

arguments and produce one result. 

 

Binary Register-To-Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0 

Op Code  Destination 

Register 

Source 

Register 1 

Source 

Register 2 

Not used 

 

Opcode = 10101 ADD Addition 

  10110 SUB Subtraction 

  10111 AND Logical AND 

  11000 OR Logical OR 

  11001 XOR Logical Exclusive OR 

NOTES: Subtract with (Destination Register) = 0 becomes a compare to set condition codes. 

The Other Op-Codes 

The other op–codes are not implemented in this design.  The reason is simply the fact that the 

above selection of op–codes suffices to make the points required for this text. 

Wasted Space 

The reader might notice the label “Not Used” for many of the fields in the above instructions.  

This is a clear indication that a CISC design, with varying instruction lengths would be more 

efficient in the use of memory.  The reason chosen by this author for the uniform instruction 

length is similar to that chosen by most designers of RISC: simplicity.  For the RISC 

designers, simplicity implies a more efficient design.  For this author, simplicity means a 

design that is easier to describe.  The Boz–7 is inherently inefficient. 
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A Word Of Caution to System Programmers 

At this point in the chapter, we pause and present a cautionary tale in the form of a possible 

strategy for programming the Boz–7 computer.  This example might seem ridiculous, except 

for the fact that something like it happened to Apple Computers, when the company 

expanded the address space of its Macintosh line of computers to a full 32 bits. 

 

Suppose it is the goal of a systems programmer to provide a device handler, written as a 

subroutine, and thus invoked by a JSR instruction.  The clever programmer will recall that 

only the 20 low order bits (represented by five hexadecimal digits) are used in forming 

addresses.  More specifically, the upper twelve bits (three hex digits) are ignored. 

 

In indirect addressing as used with subroutine calls, the argument contains the address of 

subroutine to be called.  Specifically, the following instruction will cause the subroutine at 

address 0x12345 to be called. 

 JSR *Z  with M[Z] = 0x12345. 

To be more specific in the example, note that M[Z] = 0x00012345, as it is properly 

represented by eight hexadecimal digits.  It is just that we suppress leading zeroes. 

Now consider the instruction 

 JSR *Z  with M[Z] = 0x13612345. 

Because only the 20 low order bits are used in forming the address of the subroutine, this is 

equivalent to the previous example, with the subroutine at address 0x12345 being called.  A 

clever programmer can make use of this, with code such as the following. 

 LDR %R1, Z  // Get the address of the pointer into register 1. 

 RLS %R1, %R1, 20 // Shift out the address bits 

 ANDI %R2, %R1, 0x7 // R2 now has three low order bits of R1 

 RLS %R1, %R1, 3  // Shift these bits out 

 ANDI %R1, %R1, 0x3F // Keep the six low order bits. 

 JSR *Z   // Complete the subroutine jump. 

Reading the code fragment above, one might see that R2 has a priority and R1 has a six–bit 

number that will serve as a set of security flags.  Let’s trace the execution of this clever code. 

 LDR %R1, Z  // %R1 = = 0x13612345 

 RLS %R1, %R1, 20 // %R1 = = 0x00000136 

 ANDI %R2, %R1, 0x7 // %R2 = = 0x00000006 

 RLS %R1, %R1, 3  // %R1 = = 0x00000026 

 ANDI %R1, %R1, 0x3F // %R1 = = 0x00000026 = = 001001102. 

 JSR *Z   // Complete the subroutine jump. 

So we have been clever and coded the 32–bit word describing the subroutine with three 

entries: its 20–bit address, the priority with which it runs, and the security flags with which it 

runs.  Now, what happens when we upgrade the system to run with true 32–bit addresses?  

The answer is that the operating system, being full of these tricks, must be rewritten 

completely.  This is not an easy task.  As mentioned above, such has actually happened. 
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Organization of the Memory Unit 

The design of the Boz–7 uses a 32–bit data word and 32–bit instruction word.  For memory 

reference instructions, the address is formed from a 20–bit address in the CPU converted to a 

26–bit address by use of the 6–bit page register for the PSR associated with the program.  

The process of generating a logical memory address is shown in a figure, copied from earlier 

in this chapter. 

 
Figure: Memory Addressing in the Boz–7 

Because the design uses a 26–bit address field to access memory, it was decided to have a 

memory requiring only 26 address bits; thus a memory with 64 Meg (2
26

) of entries.  Each 

data and instruction register of this computer contains 32 bits, so it was decided that each 

addressable memory unit would also contain 32 bits.  Future revisions of this computer series 

might provide for byte addressing, but that has been postponed until this author can consider 

all of the consequence of providing such addressing.  For now we keep it simple. 

 

The Boz–7 Memory as It Is 

The memory contains 2
26

 ( 64M = 67,108,864 ) addressable 32–bit words.  The memory is 

organized into sixty four logical banks, each holding 1M ( 1,048,576 ) 32–bit words. 

 

The physical organization of the memory is based on memory chip technology that was 

current as of April, 2004.  The memory uses eight Micron MT47H16M16 memory chips, 

each a chip being organized as a 16 Meg x 16 chip.  These chips are organized into four 

memory banks, each bank containing a pair of 16 Meg x 16 chips and considered as a  

16 Meg x 32 memory unit.  Since this memory holds 2
26

 addressable units, it must be 

accessed by twenty–six address lines; these are called A25 .. A0. 

 

Low order interleaving is used.  The 24 high–order bits of the address ( A25 .. A2 ) are sent to 

each of the memory banks and the 2 low–order bits of the address ( A1, A0 ) select the bank.  

To speed memory access, all memory accesses are made to four banks at once. 
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The data bus on this design is the only feature that stretches the current state-of-the-art in 

computer design.  It is a 128–bit (four 32–bit word) bus, attached to the CPU via a 32KB 

SRAM cache with 128–bit cache lines.  The organization is as follows. 

 

 
 

Recalling that 32KB = 2
15

 bytes = 2
18

 bits, we see that the cache memory is divided into 1024 

(2
10

) cache lines, each of 128 (2
7
) bits or eight 32–bit words, the same size as the data bus 

between cache memory and main memory.  The goal is to transfer data one cache line at a 

time, facilitating fast access to main memory.  We illustrate the cache in terms of reading 

from memory, such as might be done for fetching an instruction. 

 1) A 26–bit address is sent to the cache memory and READ is asserted. 

 2) If the addressed unit is in the cache memory, the 32–bit word is transmitted  

  to the MBR in the CPU within about 2-to-3 nanoseconds. 

 3) If the addressed unit is not in the cache memory, the 26–bit address is treated as 

   a) A 3–bit offset within a cache line 

   b) A 23–bit address associated with identifying the cache line 

 4) The 26–bit address is transmitted to the four–way interleaved memory, which 

  sends the 24 high order bits of the address to all four memory banks.  This results 

  in the main memory producing four 32–bit words.  These four words are 

  transmitted simultaneously along the 128–bit data bus, filling the cache line. 

 5) The addressed word is then copied into the MBR of the CPU.  With any luck, the 

  next few memory references will match entries in the cache. 

 

Memory Interface 

At this moment, the memory unit will have the following interface to the CPU 

 MAR the 20-bit Memory Address Register 

 MBR the 32–bit Memory Buffer Register 

 READ when asserted high, the CPU reads from memory 

 WRITE when asserted high, the CPU writes to memory 

 

As an arbitrary tie breaker, we specify that READ takes precedence over WRITE, although 

the control unit should never assert the two signals at the same time.  Thus, we have 

 

READ WRITE Action 

0 0 Nothing happens 

0 1 CPU writes to memory 

1 0 
CPU reads from memory 

1 1 
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Solved Problems 

1. Calculate the effective address for each of the following instructions.  Assume that the 

contents of the index register 3 are (%R3) = – 7; W is the memory location 0x007D and that 

a partial memory map looks as follows: 

 

Address 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 

Contents 4D 7F 4F BA BA 77 8F 22 82 DD E1 23 F0 0D 

 

 a) LDR, %R1 W  . Remember that W refers to address 0x7D 

 b) BR *  W  . Remember that this is indirect addressing 

 c) BR *  W, 3   . Handle this the way that the Boz-3b does 

 

ANSWER: 

 a) Effective address is W, W = 0x7D. 

 b) Effective address is EA = M[W] = M[0x7D] = 0x82. 

 c) Pre-Indexed EA = M[W + (%R3)] = M[0x7D – 7] = M[0x76] = 0x7F 

  Post-Indexed EA = M[W] + (%R3) = M[0x7D] – 7 = 0x82 – 7 = 0x7B 

 

2. In an assembly language program, the symbol Z refers to address 0x10B.  The index 

register, R3, has value –4 (negative 4).  The memory map (with 16–bit words) is: 

Address 107 108 109 10A 10B 10C 10D 

Contents 0113 0111 010F 010D 0108 0109 0107 

What are the effective addresses for the following instructions: 

 a) Load Z Direct Addressing 

 b) Load * Z Indirect Addressing 

 c) Load Z, 3 Indexed Addressing. 

 d) Load * Z, 3 Indexed Indirect Addressing, Pre–Indexed 

Answer: 

 a) The address is Z itself  Z =    = 0x10B. 

 b) The address is the contents of Z M[Z] = M[0x10B] = 0x108. 

 c) The address is Z + (R3) = 0x10B + (–4) = 0x10B – 4 = 0x107 

 d) The address is M[Z + (R3)] = M[0x10B – 4] = M[107] = 0x113. 
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3. Assemble the Boz–7 instruction LCS %R5, %R5, 9. 

 Show the machine language as eight hexadecimal digits. 

ANSWER: The format of the instruction is as follows. 

Unary Register-To-Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0 

Op Code  Destination 

Register 

Source 

Register 

Shift Count Not 

Used 

The op code for this instruction is binary 10001 or hexadecimal 11. 

The shift count is 0x9 or binary 1001. 

NOTE: The shift count must be a 5–bit number to fill bits 19 – 16; it is 01001. 

The binary version of the instruction is first written as follows 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0 

10001 0 101 101 01001 0’s 

Write this first as 10001 0 101 101 01001 00000 

then group by fours 1000 1010 1101 0100 1000 00  

which is really  1000 1010 1101 0100 1000 0000 0000 0000  

or      0x8AD4 8000. 

4. Assemble the Boz–5 instruction XOR %R6, %R2, %R4.  Give the answer  

 as a hexadecimal number with eight hexadecimal digits. 

ANSWER: The opcode for XOR is 0x19, or binary 11001. 

 The template for the object code for this type of instruction is as follows. 

Binary Register-To-Register 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0 
Op Code  Destination 

Register 

Source 1 Source 2 Not 

used 

XOR %R6, %R2, %R4 (Opcode is 11001) 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0 
Op Code 

 

11001 

 

 

0 

Destination 

Register 

110 

Source 1 

 

010 

Source 2 

 

100 

Not 

used 

Take the binary code and rearrange it left to right. 

11001 0 110 010 100 0 

1100 1011 0010 1000, which is 0xCB28 and expands to 0xCB28 0000. 
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5. Assemble the Boz–5 instruction ADD %R3, %R2, %R1. 

 Show the machine language as eight hexadecimal digits. 

ANSWER: There are two possible answers to this one.  I give both. 

  The opcode for ADD is 0x15 or 10101 in binary. 

 The binary register–to–register instruction format is as follows, 

 with color added to reduce confusion. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0 

Op Code  Destination Source 1 Source 2 Not used 

The destination register is clearly %R3 (011).  We have two options for the source registers. 

 Source 1 is %R1 (001) and source 2 is %R2 (010) or vice–versa. 

Bits 15 – 0 of the word form 16 bits or four hexadecimal digits: 0X0000. 

We now fill in bits 31 – 16, noting that each of bits 26 and 16 must be 0. 

Option 1: Source 1 = 001, source 2 = 010 

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Binary 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 

Hex A 9 9 4 

Option 1: Source 1 = 010, source 2 = 001 

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Binary 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 

Hex A 9 A 2 

Append the four hexadecimal zeroes to either answer to get the following. 

  Answer 1: 0xA994 0000 

  Answer 2: 0xA9A2 0000 

4. The page and offset addressing scheme of the Boz–7 series is described earlier in this 

chapter.  Convert each of the page numbers and address offsets, given in hexadecimal to a 

full 26–bit address, also expressed in hexadecimal. 

 a) Page = 0X00  Offset = 0X00BAD 

 b) Page = 0X0A  Offset = 0X1CAFE 

 c) Page = 0X2F  Offset = 0X02030 

ANSWER:  

 The address scheme prefixes two page bytes to the five bytes of address. 

 Note: The page number is a six–bit number, so the maximum page number is 0x3F. 

 a) Page = 0x00, Offset = 0x00BAD 00 00BAD or 000 0BAD 

 b) Page = 0x0A, Offset = 0x1CAFE 0A 1CAFE or 0A1 CAFE 

 c) Page = 0x2F, Offset = 0x02030 2F 02030 or 2F0 2030 

 


