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Chapter 17 – Assessing Computer Performance 

Which of the world’s computers is the fastest?  This apparently silly question has been the 

fodder for many news reports, especially in the computer engineering trade press.  It may be 

the case that the title “world’s fastest computer” brings some recognition to the company 

that produces the machine, or it may be that the title is just good press. 

The above question should immediately point out the difficulty in asking it.  What does is 

mean for a computer to be fast?  How does one measure the speed of computers?  In an age 

that prefers to express admirable qualities by numerical measures, how does one assign a 

numerical measure to the speed of a computer?  What does one measure? 

The final answer to all of these questions is somewhat disappointing.  One begins with the 

application or set of applications that is to be run on the computer, and then derives a figure 

of merit that matches one’s business objectives.  In other words, the measure of “fast” 

depends on what an individual wants to do with the computer.  However, we shall yield to 

the standard temptation and attempt a discussion of assessing computer performance. 

As noted in the first chapter of this book, in the first part of the 1950’s IBM undertook a 

project to make a computer that was at least one hundred times as fast as any computer in its 

product line at the time.  What is not clear is how they intended to measure the speed and 

produce a number such that the value for one computer would be 100 times that of the other. 

Here are some typical comments that reflect the modern interest in computer speed. 

 1. I want a better computer. 

 2. I want a faster computer. 

 3. I want a computer or network of computers that does more work. 

 4. I have the latest game in “World of Warcraft” and want a computer that can play it. 

Again, we ask what does “better” or “faster” really mean.  Can one device a well accepted 

numerical quantification of either value.  As noted above, it is sometimes the case that these 

questions are easily answered.  For the gaming requirement, just play the game on a 

computer of that model and see if you get performance that is acceptable.   

The reference to the gaming world brings home a point on performance. In games one needs 

both a fast computer and a great graphics card; the performance of the entire system matters. 

The Need for Greater Performance 

Aside from the obvious need to run games with more complex plots and more detailed and 

realistic graphics, are there any other reasons to desire greater performance?  We shall study 

supercomputers later.  At one time supercomputers, such as the Cray 2 and the CDC Cyber 

205, were the fastest computers on the planet.  One distinguished computer scientist gave 

the following definition of a supercomputer.  “It is a computer that is only one generation 

behind the computational needs of the day.” 

We should mention a historical fact in the development of computational power.  During the 

“Cold War” between the Soviet Union and the United States, there were many races going 

on.  There was the well–known missile race, the space race, and the race for the fastest 

computer.  Occasionally supercomputers were built as a matter of national pride.  More 

often, they were built because there was a problem that required that computational power. 
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What applications require such computational power? 

 1. Weather modeling.  We would like to have weather predictions that are accurate 

  up to two weeks after the prediction.  This requires a great deal of computational 

  power.  It was not until the 1990’s that the models had the Appalachian Mountains. 

 2. We would like to model the flight characteristics of an airplane design before we 

  actually build it.  We have a set of equations for the flow of air over the wings and 

  fuselage of an aircraft and we know these produce accurate results. 

  The only problem here is that simulations using these exact equations would take 

  hundreds of years for a typical airplane.  Hence we run approximate solutions and 

  hope for faster computers that allow us to run less–approximate solutions. 

 3. As hinted in the historical chapter of this textbook, the U.S. National Security  

  Agency uses computers in an attempt to crack the ciphers of foreign governments.   

  All ciphers can be broken by brute force if sufficient computational power can be  

  applied to the task.  The goal of cryptographers is to create ciphers that would  

  require millions of years to crack, using any known algorithm.  In this race between  

  cryptographers and cryptanalysts, more computational power is always welcome. 

The Job Mix 

The World of Warcraft example above is a good illustration of a job mix.  Here the job mix 

is simple; just one job – run this game.  This illustrates the very simple statement “The 

computer that runs your job fastest is the one that runs your job fastest”.  In other words, 

measure its performance on your job. 

Most computers run a mix of jobs; this is especially true for computers owned by a company 

or research lab, which service a number of users.  In order to assess the suitability of a 

computer for such an environment, one needs a proper “job mix”, which is a set of computer 

programs that represent the computing need of one’s organization.   Your instructor once 

worked at Harvard College Observatory.  The system administrator for our computer lab 

spent considerable effort in selecting a proper job mix, with which he intended to test 

computers that were candidates for replacing the existing one.  This process involved 

detailed discussions with a large number of users, who (being physicists and astronomers) 

all assumed that they knew more about computers than he did.  Remember that in the 

1970’s; this purchase was for a few hundred thousand dollars. 

These days, few organizations have the time to specify a good job mix.  The more common 

option is to use the results of commonly available benchmarks, which are  

job mixes tailored to common applications. 

What Is Performance? 

Here we make the observation that the terms “high performance” and “fast” have various 

meanings, depending on the context in which the computer is used.  In many applications, 

especially the old “batch mode” computing, the measure was the number of jobs per unit 

time.  The more user jobs that could be processed, the better. 

For a single computer running spreadsheets, the speed might be measured in the number of 

calculations per second.  For computers that support process monitoring, the requirement is 

that the computer correctly assesses the process and takes corrective action (possibly to 

include warning a human operator) within the shortest possible time. 
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Some systems, called “hard real time”, are those in which there is a fixed time interval 

during which the computer must produce and answer or take corrective action.  Examples of 

this are patient monitoring systems in hospitals and process controls in oil refineries.  As an 

example, consider a process monitoring computer with a required response time of 15 

seconds.  There are two performance measures of interest. 

 1. Can it respond within the required 15 seconds?  If not, it cannot be used. 

 2. How many processes can be monitored while guaranteeing the required 15 second 

  response time for each process being monitored.  The more, the better. 

The Average (Mean) and Median 

In assessing performance, we often use one or more tools of arithmetic.  We discuss these 

here.  The problem starts with a list of N numbers (A1, A2, …, AN), with N  2.  For these 

problems, we shall assume that all are positive numbers: AJ > 0, 1  J  N. 

Arithmetic Mean and Median 

The most basic measures are the average (mean) and the median.  The average is computed 

by the formula (A1 + A2 +  + AN) / N.  The median is the “value in the middle”.  Half of the 

values are larger and half are smaller.  For a small even number of values, there might be 

two candidate median values.  For most distributions, the mean and the median are fairly 

close together.  However, the two values can be wildly different.  For example, there is a 

high–school class in the state of Washington in which the average income of its 100 

members is about $1,500,000 per year; that’s a lot of money.  If the salary of Bill Gates and 

one of his cohorts at Microsoft are removed, the average becomes about $50,000.  This 

value is much closer to the median.  Disclaimer:  This example is from memory. 

Weighted Averages,  

In certain averages, one might want to pay more attention to some values than others.  For 

example, in assessing an instruction mix, one might want to give a weight to each instruction 

that corresponds to its percentage in the mix.  Each of our numbers (A1, A2, …, AN), with  

N  2, has an associated weight.  So we have (A1, A2, …, AN) and (W1, W2, …, WN).  The 

weighted average is (W1A1 + W2A2 …+ WNAN) / (W1 + W2 +…+ WN).  If all the 

weights are equal, this value becomes the arithmetic mean. 

Consider the table adapted from our discussion of RISC computers. 

Language Pascal FORTRAN Pascal C SAL Average 

Workload Scientific Student System System System  

Assignment 74 67 45 38 42 53.2 

Loop 4 3 5 3 4 3.8 

Call 1 3 15 12 12 8.6 

If 20 11 29 43 36 27.8 

GOTO 2 9 -- 3 -- 4.7 

The weighted average 0.532TA + 0.038TL + 0.086TC + 0.278TI + 0.047TG to assess an 

ISA (Instruction Set Architecture) to support this job mix. 
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The Geometric Mean and the Harmonic Mean 

Geometric Mean 

The geometric mean is the Nth root of the product (A1A2…AN)
1/N

.  It is generally applied 

only to positive numbers, as we are considering here.  Some of the SPEC benchmarks 

(discussed later) report the geometric mean. 

Harmonic Mean 

The harmonic mean is N / ( (1/A1) + (1 / A2) + … + ( 1 / AN) )  This is more useful for 

averaging rates or speeds.  As an example, suppose that you drive at 40 miles per hour for 

half the distance and 60 miles per hour for the other half. Your average speed is 48 miles per 

hour.  If you drive 40 mph for half the time and 60 mph for half the time, the average is 50. 

Example: 

  Drive 300 miles at 40 mph.  The time taken is 7.5 hours. 

  Drive 300 miles at 60 mph.  The time taken is 5.0 hours. 

  You have covered 600 miles in 12.5 hours, for an average speed of 48 mph. 

But: Drive 1 hour at 40 mph.  You cover 40 miles 

  Drive 1 hour at 60 mph. You cover 60 miles. That is 100 miles in 2 hours; 50 mph. 

Measuring Execution Time 

Whatever it is, performance is inversely related to execution time.  The longer the execution 

time, the less the performance.  Again, we assess a computer’s performance by measuring 

the time to execute a single program or a mix of computer programs, the “job mix”, which 

represents the computing work done at a particular location. 

If a faster computer is better, how do we measure the speed?  There are two measures in 

common use wall clock time and CPU execution time.  In wall–clock time one starts the 

program and note the time on the clock.  When the program ends, again note the time on the 

clock.  The difference is the execution time.  This is the easiest to measure, but the time 

measured may include time that the processor spends on other users’ programs (it is time–

shared), on operating system functions, and similar tasks.  Nevertheless, it can be useful. 

Some people prefer to measure the CPU Execution Time, which is the time the CPU 

spends on the single program.  This is often difficult to estimate based on clock time. 

Reporting Performance: MIPS, MFLOPS, etc. 

While we shall focus on the use of benchmark results to report computer performance, we 

should note that there are a number of other measures that have been used.  The first is 

MIPS (Million Instructions per Second).  Another measure is the FLOPS sequence, 

commonly used to specify the performance of supercomputers, which tend to use floating–

point math fairly heavily.  The sequence is: 

  MFLOPS Million Floating Point Operations per Second 

  GFLOPS Billion Floating Point Operations Per Second 

     (The term “giga” is the standard prefix for 10
9
.) 

  TFLOPS Trillion Floating Point Operations Per Second 

     (The term “tera” is the standard prefix for 10
12

.) 
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Using MIPS as a Performance Measure 

There are a number of reasons why this measure has fallen out of favor.  One of the main 

reasons is that the term “MIPS” had its origin in the marketing departments of IBM and 

DEC, to sell the IBM 370/158 and VAX–11/780.  One wag has suggested that the term 

“MIPS” stands for “Meaningless Indicator of Performance for Salesmen”. 

A more significant reason for the decline in the popularity of the term “MIPS” is the fact 

that it just measures the number of instructions executed and not what these do.  Part of the 

RISC movement was to simplify the instruction set so that instructions could be executed at 

a higher clock rate.  As a result the RISC designs might have a higher MIPS rating, but do 

less work, as each instruction does less work. 

For example, consider the instruction A[K++] = B as part of a loop.  The VAX supports an 

auto–increment mode, which uses a single instruction to store the value into the array and 

increment the index.  Most RISC designs require two instructions to do this.  Put another 

way, in order to do an equivalent amount of work a RISC machine must run at a higher 

MIPS rating than a CISC machine.  However, the measure does have merit when comparing 

two computers with identical organization. 

GFLOPS, TFLOPS, and PFLOPS 

The term “PFLOP” stands for “Petaflop” or 10
15

 floating–point operations per second. 

This is the next goal for the supercomputer community.  The supercomputer community 

prefers this measure, due mostly to the great importance of floating–point calculations in 

their applications.  A typical large–scale simulation may devote 70% to 90% of its resources 

to floating–point calculations. 

The supercomputer community has spent quite some time in an attempt to give a precise 

definition to the term “floating point operation”.  As an example, consider the following 

code fragment, which is written in a standard variety of the FORTRAN language. 
       DO 200 J = 1, 10 

  200  C(J) = A(J)*B(J) + X 

The standard argument is that the loop represents only two floating–point operations: the 

multiplication and the addition.  I can see the logic, but have no other comment.  The main 

result of this measurement scheme is that it will be difficult to compare the performance of 

the historic supercomputers, such as the CDC Cyber 205 and the Cray 2, to the performance 

of the modern day “champs” such as a 4 GHz Pentium 4. 

In another lecture we shall investigate another use of the term “flop” in describing the 

classical supercomputers, when we ask “What happened to the Cray 3?” 

CPU Performance and Its Factors 

The CPU clock cycle time is possibly the most important factor in determining the 

performance of the CPU.  If the clock rate can be increased, the CPU is faster.  In modern 

computers, the clock cycle time is specified indirectly by specifying the clock cycle rate.  

Common clock rates (speeds) today include 2GHz, 2.5GHz, and 3.2 GHz.  The clock cycle 

times, when given, need to be quoted in picoseconds, where 1 picosecond = 10
–12

 second;  

1 nanosecond = 1000 picoseconds. 
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The following table gives approximate conversions between clock rates and clock times. 

  Rate  Clock Time 

  1 GHz  1 nanosecond  = 1000 picoseconds 

  2 GHz  0.5 nanosecond = 500 picoseconds 

  2.5 GHz 0.4 nanosecond = 400 picoseconds 

  3.2 GHz 0.3125 nanosecond = 312.5 picoseconds 

  4.0 GHz 0.250 nanosecond = 250 picoseconds 

We shall return later to factors that determine the clock rate in a modern CPU.  There is 

much more to the decision than “crank up the clock rate until the CPU fails and then back it 

off a bit”.  As mentioned in an earlier chapter, the problem of cooling the chip has given rise 

to limits on the clock speed, called the “power wall”.  We shall say much more on this later. 

CPI: Clock Cycles per Instruction 

This is the number of clock cycles, on average, that the CPU requires to execute an 

instruction.  We shall later see a revision to this definition.  Consider the Boz–7 design used 

in my offerings of CPSC 5155.  Each instruction would take 1, 2, or 3 major cycles to 

execute: 4, 8, or 12 clock cycles.  In the Boz–7, the instructions referencing memory could 

take either 8 or 12 clock cycles, those that did not reference memory took 4 clock cycles.  A 

typical Boz–7 instruction mix might have 33% memory references, of which 25% would 

involve indirect references (requiring all 12 clock cycles). 

The CPI for this mix is CPI = (2/3)4 + 1/3(3/48 + 1/412) 

     = (2/3)4 + 1/3(6 + 3) 

     = 8/3 + 3 = 17/3 = 5.33. 

The Boz–7 has such a high CPI because it is a traditional fetch–execute design.  Each 

instruction is first fetched and then executed.  Adding a prefetch unit on the Boz–7 would 

allow the next instruction to be fetched while the present one is being executed.  This 

removes the three clock cycle penalty for instruction fetch, so that the number of clock 

cycles per instruction may now be 1, 5, or 9. 

For this CPI = (2/3)1 + 1/3(3/45 + 1/49) = 2/3 + 1/3(15/4 + 9/4) 

   = 2/3 + 1/3(24/4) = 2/3 + 1/36 = 2.67.  This is still slow. 

More on Benchmarks 

As noted above, the best benchmark for a particular user is that user’s job mix.  Only a few 

users have the resources to run their own benchmarks on a number of candidate computers.  

This task is now left to larger test labs.  These test labs have evolved a number of synthetic 

benchmarks to handle the tests.  These benchmarks are job mixes intended to be 

representative of real job mixes.  They are called “synthetic” because they usually do not 

represent an actual workload. 

The Whetstone benchmark was first published in 1976 by Harold J. Curnow and Brian A. 

Wichman of the British National Physical Laboratory.  It is a set of floating–point intensive 

applications with many calls to library routines for computing trigonometric and exponential 

functions. Supposedly, it represents a scientific work load.  Results of this are reported as 

  KWIPS  (Thousand Whetstone Instructions per Second), or 

  MWIPS  (Million Whetstone Instructions per Second) 
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The Linpack (Linear Algebra Package) benchmark is a collection of subroutines to 

solve linear equations using double–precision floating–point arithmetic.  It was published in 

1984 by a group from Argonne National Laboratory.  Originally in FORTRAN 77, it has 

been rewritten in both C and Java, with results reported in FLOPS, GFLOPS, TFLOPS, etc. 

Games People Play (with Benchmarks) 

Synthetic benchmarks (Whetstone, Linpack, and Dhrystone) are convenient, but easy to 

fool.  These problems arise directly from the commercial pressures to quote good 

benchmark numbers in advertising copy.  This problem is seen in two areas. 

 1. Manufacturers can equip their compilers with special switches to emit code  

  that is tailored to optimize a given benchmark at the cost of slower performance  

  on a more general job mix.  “Just get us some good numbers!” 

 2. The benchmarks are usually small enough to be run out of cache memory. 

  This says nothing of the efficiency of the entire memory system, which must 

  include cache memory, main memory, and support for virtual memory. 

There are rumors about a 1995 Intel special compiler that was designed only to excel in the 

SPEC integer benchmark.  Its code was fast, but incorrect. 

Bottom Line: Small benchmarks invite companies to fudge their results.  Of course they 

would say “present our products in the best light.” 

More Games People Play (with Benchmarks) 

Your instructor recalls a similar event in the world of Lisp machines.  These were 

specialized workstations designed to optimize the execution of the LISP language widely 

used in artificial intelligence applications.  The two “big dogs” in this arena were Symbolics 

and LMI (Lisp Machines Incorporated).  Each of these companies produced a high–

performance Lisp machine based on a microcoded control unit.  These were the Symbolics–

3670 and the LMI–1.  Each company submitted its product for testing by a graduate student 

who was writing his Ph.D. dissertation on benchmarking Lisp machines. 

Between the time of the first test and the first report at formal conference, LMI customized 

its microcode for efficient operation on the benchmark code.  At the original test, the LMI–1 

had only 50% of the performance of the Symbolics–3670.  By the time of the conference, 

the LMI–1 was now “officially” 10% faster.  The managers from Symbolics, Inc. 

complained loudly that the new results were meaningless.  However, these complaints were 

not necessary as every attendee at the conference knew what had happened and 

acknowledged the Symbolics–3670 as faster.  Note:  Neither design survived the Intel 

80386, which was much cheaper than the specialized machines, had an equivalent GUI, and 

was about as fast.  At the time, the costs were about $6,000 vs. about $100,000. 
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The SPEC Benchmarks 

The SPEC (Standard Performance Evaluation Corporation) was founded in 1988 by a 

consortium of computer manufacturers in cooperation with the publisher of the trade 

magazine The Electrical Engineering Times.  (See www.spec.org) 

As of 2007, the current SPEC benchmarks were: 

1. CPU2006  measures CPU throughput, cache and memory access speed, 

      and compiler efficiency.  This has two components: 

     SPECint2006 to test integer processing, and 

     SPECfp2006 to test floating point processing. 

2. SPEC MPI 2007 measures the performance of parallel computing systems and clusters 

     running MPI (Message–Passing Interface) applications. 

3. SPECweb2005 a set of benchmarks for web servers, using both HTTP and HTTPS. 

4. SPEC JBB2005 a set of benchmarks for server–side Java performance. 

5. SPEC JVM98 a set of benchmarks for client–side Java performance. 

6. SPEC MAIL 2001 a set of benchmarks for mail servers. 

The student should check the SPEC website for a listing of more benchmarks. 

Some Concluding Remarks on Benchmarks 

First, remember the great temptation to manipulate benchmark results for commercial 

advantage.  As the Romans said, “Caveat emptor.”  Also remember to read the benchmark 

results skeptically and choose the benchmark that most closely resembles your own 

workload.  As the English say, “Let the buyer beware.” 

Finally, do not forget Amdahl’s Law, which computes the improvement in overall system 

performance due to the improvement in a specific component.  This law was formulated by 

George Amdahl in 1967.  One formulation of the law is given in the following equation. 

S = 1 / [ (1 – f) + (f /k) ] 

where  S is the speedup of the overall system, 

   f is the fraction of work performed by the faster component, and 

   k is the speedup of the new component. 

It is important to note that as the new component becomes arbitrarily fast (k  ), 

the speedup approaches the limit S = 1/(1 – f). 

If the newer and faster component does only 50% of the work, the maximum speedup is 2.  

The system will never exceed being twice as fast due to this modification. 
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