
Page 1 of 14 pages

Design with Multiplexers

Consider the following design, taken from the 5th edition of my textbook.

This is a correct implementation of the Carry–Out of a Full Adder.

In terms of Boolean expressions, this is F(X, Y, Z) = (3, 5, 6, 7).

We try this with a common circuit emulator, such as Multi-Media Logic,
and find that we need to think about more.



Page 2 of 14 pages

An Eight–to–One MUX in Multi–Media

Here is the circuit element selected in the Multi–Media Logic tool.

This is an 8–to–1 MUX with inputs labeled 7 through 0, or
equivalently X7 through X0. This is expected.

The selector (control) lines are as expected; 2 through 0.

In my notes, I use M for the output of the Multiplexer. This
figure uses the symbol Y (not a problem) and notes that real
multiplexers also output the complement.

The only issue here is the enable. Note that the MUX is
enabled low; this signal must be set to ground in order for
the multiplexer to function as advertised.



Page 3 of 14 pages

Carry–Out of a Full Adder

Here is a screen shot of my implementation of F(X, Y, Z) = (3, 5, 6, 7).

NOTE: Show simulation here.



Page 4 of 14 pages

Gray Codes: Minimal Effort Testing

Consider the above circuit with three basic inputs S2, S1, S0.
How can one test all possible inputs with minimum switching?

One good answer is to use Gray Codes for input. Here are the 2–bit and 3–bit codes.

00 000

01 001

11 011

10 010

110

111

101

100

To generate an (N + 1)–bit code set from an N–bit code set.
1. Write out the N–bit codes with 0 as a prefix, then
2. Write out the N–bit codes in reverse with 1 as a prefix.

00, 01, 11, 10 becomes 000, 001, 011, 010, 110, 111, 101, and 100



Page 5 of 14 pages

Testing the Carry–Out Circuit

If the Enable switch is set to 1, the output is always 0. Y’ = 1.

Set the Enable switch to 0 and generate the following sequence.

Start with S2 = 0, S1 = 0, S0 = 0. 0 0 0

Click S0 to get 0 0 1

Click S1 to get 0 1 1

Click S0 to get 0 1 0

Click S2 to get 1 1 0

Click S0 to get 1 1 1

Click S1 to get 1 0 1

Click S0 to get 1 0 0



Page 6 of 14 pages

Design with Decoders

We now look at another circuit from my textbook. This shows the implementation of a
Full Adder with an active high decoder and two OR gates. The outputs are:

F1 the Sum
F2 the Carry–Out

F1(A, B, C) = (1, 2, 4, 7) = (0, 3, 5, 6)

F2(A, B, C) = (3, 5, 6, 7) = (0, 1, 2, 4)

PROBLEM: Almost all commercial decoders are active low.



Page 7 of 14 pages

Active Low Decoders

First, let’s use 3–to–8 decoders to describe the difference between
active high and active low.

In the active–high decoder, the active output
is set to +5 volts (logic 1), while the other
outputs are set to 0 volts (logic 0).

In the active–low decoder, the active output
is set to 0 volts (logic 0), while the other
outputs are set to +5 volts (logic 1).



Page 8 of 14 pages

Enabled Low, Active Low Decoders

All commercial decoders have an enable input; most are enabled low.

Since the decoder is enabled low, when the input
signal E’ = 1, none of the decoder outputs are active.
Since the decoder is active low, this means that all
of the outputs are set to logic 1 (+5 volts).

Since the decoder is enabled low, when the input
signal E’ = 0, the decoder is enabled and the selected
output is active. Since the decoder is active low, this
means that the selected output is set to logic 0, and
all other outputs are set to logic 1.



Page 9 of 14 pages

Why Active Low / Enabled Low?

This is a conjecture, but it makes sense to me.

The active–high decoder is providing power to the device it enables.

The active–low decoder is just providing a path to ground for the device it enables.
It is likely that this approach yields a faster circuit.



Page 10 of 14 pages

Back To Active High: A Look At F2

Seeking a gate that outputs 1 if at least one of its inputs is 1, we are led to the OR gate.



Page 11 of 14 pages

Active Low: F2(X, Y, Z) = (0, 1, 2, 4)

F2 is 1 if and only if none of the outputs Y0, Y1, Y2, or Y4 are selected. Specifically, each
of those outputs must be a logic 1. This leads to an AND gate implementation.



Page 12 of 14 pages

Full Adder Implemented with a 3–to–8 Decoder

The sum is at top: F(X, Y, Z) = (0, 3, 5, 6)

The carry–out is at bottom: F(X, Y, Z) = (0, 1, 2, 4)



Page 13 of 14 pages

Where are the Decoders?

One will note that the Multi–Media Logic tool does not provide a decoder circuit.

Fortunately, a 1–to–2N demultiplexer can be made into an N–to–2N decoder.

Look at the circuit to the left. The control signals C1,C0 select the output to receive the
input X. This is exactly equivalent to a decoder.

In the circuit at right, the selected output gets the input, now called “Enable”.
For the demultiplexers we use, the other outputs get a logic 1.

We can fabricate an active low decoder.



Page 14 of 14 pages

The MUX as an Active–Low Decoder

Here is the 2–to–4 Demultiplexer as an 2–to–4 active low decoder.

Here is an answer to one of the homework problems: use a 2–to–4 decoder for XOR.

The function is either (1, 2) or (0, 3).


