
The Assembly Language of the Boz–5

The Boz–5 uses bits 31 – 27 of the IR as a five–bit opcode.

Of the possible 32 opcodes, only 26 are implemented.

Op-Code Mnemonic Description

00000 HLT Halt the Computer

00001 LDI Load Register from Immediate Operand

00010 ANDI Logical AND Register with Immediate Operand

00011 ADDI Add Signed Immediate Operand to Register

00100 NOP Not Yet Defined – At Present it is does nothing

00101 NOP Not Yet Defined – At Present it is does nothing

00110 NOP Not Yet Defined – At Present it is does nothing

00111 NOP Not Yet Defined – At Present it is does nothing

This strange gap in the opcodes caused by not using 4, 5, 6, and 7 is an example
of adjusting the ISA to facilitate a simpler design of the control unit.

With this grouping, the instructions with a “00” prefix either have no argument
or have an immediate argument; in short, no memory reference.



More Opcodes

Here are the opcodes in the range 8 to 15.

Op-Code Mnemonic Description

01000 GET Input from I/O Device Register to Register

01001 PUT Output from Register to I/O Device Register

01010 RET Return from Subroutine

01011 RTI Return from Interrupt (Not Implemented)

01100 LDR Load Register from Memory

01101 STR Store Register into Memory

01110 JSR Call a subroutine.

01111 BR Branch on Condition Code to Address

Here we begin to see some structure in the ISA.

The “01” prefix is shared by all instructions that generate memory address
references. This grouping simplifies the design of the Major State Register,
which is an integral part of the control unit.



The Last Opcodes

Op-Code Mnemonic Description

10000 LLS Logical Left Shift

10001 LCS Circular Left Shift

10010 RLS Logical Right Shift

10011 RAS Arithmetic Right Shift

10100 NOT Logical NOT (One’s Complement)

10101 ADD Addition

10110 SUB Subtraction

10111 AND Logical AND

11000 OR Logical OR

11001 XOR Logical Exclusive OR

The instructions with the “10” and “11” prefix, in short all with the single–bit
prefix of “1”, are register–to–register operations, with no memory reference.

Again, one sees this grouping in an attempt to simplify the control unit.



Syntax of the Assembly Language

Immediate Operations
The syntax of the immediate operations is quite simple.

Syntax Example

LDI %RD, value LDI %R3, 100
ANDI %RD, %RS, value ANDI %R5, %R3 0xFFA08
ADDI %RD, %RS, value ADDI %R5, %R2, 200
NOP NOP

Most implementations of immediate addressing have only one register in the
machine language instruction. Our implementation with two registers is again
due to considerations of simplifying the control unit.

In the AND Immediate instruction, the immediate operand is zero extended to
32 bits before being applied. Let R3 contains the 32–bit number 0x77777777.

R3 0111 0111 0111 0111 0111 0111 0111 0111
FFA08 0000 0000 0000 1111 1111 1010 0000 1000
Result 0000 0000 0000 0111 0111 0010 0000 0000



Syntax of the Assembly Language (Part 2)

Input / Output Operations
Syntax Example
GET %Rn, I/O_Reg GET %R2, XX

// Load the general-purpose register from
// the I/O device register.

PUT %Rn, I/O_Reg PUT %R0, YY
// Store the contents of register into the
// I/O device register.

Load/Store Operations
The syntax of these is fairly simple. For direct addressing we have the
following.

Syntax Example
LDR %Rn, address LDR %R3, X Loads %R3 from address X
STR %Rn, address STR %R0, Z Loads %R0 into address Z

This clears M[Z]



Syntax of the Assembly Language (Part 3)

Branch
The syntax of this instruction, and its variants, is quite simple.

Syntax Example

BR Condition_Code, address BRU 5, W

The condition code field determines under which conditions the Branch
instruction is executed. The eight possible options are.

Condition Code
Decimal Binary Action

0 000 Branch Always (Unconditional Jump)
1 001 Branch on negative result
2 010 Branch on zero result
3 011 Branch if result not positive
4 100 Branch if carry–out is 0
5 101 Branch if result not negative
6 110 Branch if result is not zero
7 111 Branch on positive result



Syntax of the Assembly Language (Part 4)

Unary Register-To-Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 – 0

Op Code Destination
Register

Source
Register

5–bit Shift Count
(0 – 31)

Not
Used

Opcode = 10000 LLS Logical Left Shift

10001 LCS Circular Left Shift

10010 RLS Logical Right Shift

10011 RAS Arithmetic Right Shift

10100 NOT Logical NOT (Shift count ignored)

NOTES: 1. If (Count Field) = 0, a shift operation becomes a register move.
2. If (Source Register = 0), the operation becomes a clear.
3. Circular right shifts are not supported, because they may be

implemented using circular left shifts.
4. The shift count, being a 5 bit number, has values 0 to 31 inclusive.



Shift Examples

Here are figures showing the varieties of right shifts on signed 8–bit integers.



Syntax of the Assembly Language (Part 5)

Binary Register-To-Register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 – 0

Op Code Destination
Register

Source
Register 1

Source
Register 2

Not used

Opcode = 10101 ADD Addition

10110 SUB Subtraction

10111 AND Logical AND

11000 OR Logical OR

11001 XOR Logical Exclusive OR

NOTES: Subtract with (Destination Register) = 0 becomes a compare to set
condition codes.



Syntactic Sugar

Syntactic Sugar Assembled As Comments

CLR %R2 LDI %R2, 0 Clears the register
CLW X STR %R0, X Clears the word at address X
INC %R2 ADDI %R2, 1 Increments the register
DEC %R2 ADDI %R2, -1 Decrements the register

NOP LLS %R0, %R0, 0 No-Operation: Does Nothing
RCS %R3, %R1, 3 LCS %R3, %R1, 29

Right circular shift by N is the same as left circular by (32 – N). The shift count
must be a constant number.

DBL %R2 LLS %R2, %R2, 1 Left shift by one is the
same as a multiply by 2.

MOV %R2, %R3 LSH %R2, %R3, 0 Shift by 0 is a copy.

NEG %R4, %R5 SUB %R4, %R0, %R5 Subtract from %R0  0
is the same as negation.



Syntactic Sugar (Part 2)

Syntactic Sugar Assembled As Comments

TST %R1 SUB %R0, %R1, %R0

This compares %R1 to zero by subtracting %R0 from it, discarding the result.

CMP %R1, %R2 SUB %R0, %R1, %R2

Determines the sign of(%R1) – (%R2), discarding the result.

BRU BR 000 Branch always

BLT BR 001 Branch if negative
BEQ BR 010 Branch if zero

BLE BR 011 Branch if not positive
BCO BR 100 Branch if carry out is 0
BGE BR 101 Branch if not negative
BNE BR 110 Branch if not zero
BGT BR 111 Branch if positive


