PART V
External Storage and File Processing

17

EXTERNAL
STORAGE

OBJECTIVE

To explain the design and uses of magnetic tape and
disk storage devices.

A file, or data set, is a collection of related data records. Most data processing
applications involve data files of such volume that they require large external
magnetic tape and disk storage devices. Tape and disk provide mass external
storage, extremely fast input/output, reusability, and records of almost any length.

This chapter introduces the various file organization methods and describes
the architecture for magnetic tape and disk drives. The next three chapters cover
the processing of files.

FILE ORGANIZATION METHODS
In any system, a set of related records is arranged into a file and organized according

to the way in which programs are intended to process them. Once you create a
file under a particular organization method, all programs that subseqguently process

441

442 External Storage Chap. 17

the file must do so according to the requirements of the method. Let’s take a
brief look at the most common organization methods.

Sequential File Organization

Under sequential organization, records are stored one after another. They may
be in ascending sequence (the usual) or descending sequence by a particular key
or keys (control word), such as customer number or employee number within
department, or, contrary to what the name sequential organization implies, records
need not be in any particular sequence.

Transaction records may be accumulated into a file in random sequence.
You can either use the file in its unsorted form for random updating of a master
file or sort it into a specified order for sequential updating.

You can store a sequentially organized file on any type of device and for any
type of file, such as master, transaction, and archival.

indexed Sequential File Organization

Indexed sequential organization for master files lets you access records in ascending
sequence and also supports indexes that enable you to access any record randomly
by key, such as customer number.

Direct File Organization

Direct file organization facilitates direct access of any record in a master file. The
main advantage is that this method provides fast accessing of records and is thus
particularly usefui for online systems.

Virtual Storage Access Method

Virtual storage access method (VSAM) supports three organization types. Entry-
sequenced is equivalent to sequential organization, key-sequenced is equivalent to
indexed, and relative-record is equivalent to direct.

Disk storage devices, but not tape, support indexed sequential, VSAM, and
direct organization. Chapters 18, 19, and 20 cover sequential, VSAM, and indexed
sequential, respectively.

ACCESS METHODS

An access method is the means by which the system performs input/output requests.
The methods depend on the file organization and the type of accessing required.
DOS supports four methods and OS supports seven.

Processing of External Storage Devices 443

File Brganization Methed DOsS os
Seguential SAM QSAaM or BSAM
Virtual vSamM VSAM
Indexed I1SaM QISAM or BISAM
Direct DAM EBDAM
Partitioned - BPAM

PROCESSING OF EXTERNAL STORAGE DEVICES

Major similarities between tape and disk are that records may be of virtually any
length, of fixed or variable length, and clustered together into one or more records
per block.

There are, however, two major differences in processing tape and disk. First,
each time you read or write, the tape drive starts, transfers the data, and then
stops, whereas a disk drive rotates continuously. Second, whenever you update
(add, change, or delete)} records on tape, you rewrite the entire changed ﬁle on
another reel, whereas you can update disk records directly, in place.

Identification of External Devices

Both disk and tape have unique ways of identifying their contents to help in locating
files and in protecting them from accidental erasure.

Tape file identification. At the beginning of the tape reel is a volume
label, which is a record that identifies the reel being used. Immediately preceding
each file on the tape is a header label, which describes the file that follows. This
record contains the name of the file (for example, INVENTORY FILE) and the
date the file was created. Following the header iabel are the records that comprise
the data file.

The last record following the file is a #railer label, which is similar to the
header label but also contains the number of blocks written on the reel. The
operating system automatically handles the header and trailer labels.

Disk file identification. To keep track of all the files it contains, a disk
device uses a special directory (volume iable of contents, VTOC) at the beginning
of its storage area. The directory incledes the names of the files, their locations
on disk, and their present status.

Packed and Binary Data

Tape and disk records can contain numeric fields defined as zoned, binary, or
packed. Packed format involves two digits per byte plus a half-byte for the sign,

444 External Storage Chap. 17

such as
PAYMENT DS PL4

In this case, the field length is 4 bytes, stored as dd | dd | dd | ds, where d is a
digit and s is the sign.

I the field is defined as binary, watch out for erroneous alignment of the
field when you read it into main storage. The following binary fields are both 4
bytes long:

Aligned on a fullword boundary: PAYMENT1 DS F
Not atigned on a boundary: PAYMENI2 DS FIL4

The assembler automatically aligns PAYMENT1 on a fullword boundary, whereas
the assembler defines PAYMENT2 at its proper (unaligned) location.

Unblocked and Blocked Records

Disk and tape devices recognize blocks of data, which consist of one or more
records. A blank space, known as an interblock gap (IBG), separates one block
from another. The length of an IBG on tape is 0.3 to 0.6 inches depending on
the device, and the Iength of an IBG on disk varies by device and by track location.
The IBG has two purposes: (1) to define the start and end of each block of data
and (2) to provide space for the tape when the drive stops and restarts for each
read or write of a block.

Records that are stored one to a block are called unblocked. As shown in
Fig. 17-1(a), following each block is an IBG.

To reduce the amount of tape and disk storage and to speed up input/output,
you may specify a blocking factor, such as three records per block, as shown in

Fixed unblocked
- E/// %,) 77 7/
IBG] Rec-i :IBG.C Rec-2 FIBGH Rec-3 ;IBG? Rec-4 FIBG
__ V2 7 7 VA
One record = one block
@
Fixed blocked
v : : 7 N % .
{B///é Rec-1 : Rec-2 : Rec-3 ’{B//é/; Rec-4 : Rec-5 : Rec-6 EIBG.
—_—— %/ 1 1 % L] 1 a////’/ —_—

Three records = one block

(b)
Figure 17-1 (2) Unblocked records. (b) Blocked records.

Processing of External Storage Devices 445

Fig. 17-1(b). In this format, the system writes an entire block of three records
from main storage onto the device. Subsequently, when the system reads the file,
it reads the entire block of three records from the device into storage. Allprograms
that subsequently read the file must specify the same record length and block length.

Blocking records makes better use of disk and tape storage but requires a
larger buffer area in main storage to hold the block.

input Buffers

The action of an input operation depends on whether records are unblocked or
blocked. If unblocked, the operation transfers one record (block) at a time from
the device into the input/output buffer in your program.

The following example of blocked records assumes three records per block.
Initially, the input operation transfers the first block from the device into the buffer
(I/O area) in your program and delivers the first record to your program’s workarea:

buffer: I Rec-l—rRec-Z] Rec-3 l

X
workarea:

For the second input executed, the operation does not have to access the device.
Instead, it simply delivers the second record from the buffer to your program’s
workarea:

buffer: lRec—l | Rec-2 l Rec-?]

yrd
workarea:

And for the third input executed, the operation delivers the third record from the
buffer to your program’s workarea:

buffer: lEec—l l Rec-2 Rec—ﬂ
/

workarea:

While the program processes the third record in the workarea, the system can read
ahead and transfer the second block from the device into the buffer in your program.
For the fourth input executed, the operation delivers the first record from the
buffer to your program’s workarea:

buffer: [Rec-4 |Rec-5| Rec-g'
N

workarea:

446 External Storage Chap. 17
Output Buffers

The action of an output operation depends on whether records are unblocked or
blocked. If unblocked, the output operation transfers one record {block) at a time
from your workarea to the buffer in your program and then to the output device.

The following example of blocked records assumes three records per block.
The first output operation writes the record in the workarea to the first record
location in the output buffer:

workarea:

~~
buffer: ‘ Rec-1 | | |

No actual physical writing to the output device occurs at this time. The second
output operation writes the record in the workarea to the second record location
in the buffer:

workarea:

Y
buffer: | Rec-1 I Rec-2 I l

Similarly, the third output operation writes the record in the workarea to the third
record location in the buffer. Now that the buffer is full, the system can physically
write the contents of the buffer, the block of three records, 1o the external device.

The CLOSE operation automatically writes the last block of data, which may
validly contain fewer records than the blocking factor specifies.

Fixed-Length and Variable-Length Records

Records and blocks may be fixed in length, where each has the same length through-
out the entire file, or variable in length, where the length of each record and the
blocking factor are not predetermined. There are five formats:

1. Fixed, unblocked: one record of fixed length per block

2. Fixed, blocked: more than one fixed-length record per block

3. Variable, unblocked: one variable-length record per block

4. Variable, blocked: more than one variable-length record per block

5. Undefined: contents of no defined format (Not all systems support this for-
mat.)

L_/

s

Magnetic Tape Storage 447

MAGNETIC TAPE STORAGE

The magnetic tape used in a computer system is similar to the tape used by con-
ventional audiotape recorders; both use a similar coating of metallic oxide on
flexibie plastic, and both can be recorded and erased. Its large capacity and its
reusability make tape an economical storage medium.

Data records on tape are usually, but not necessarily, stored sequentially,
and a program that processes the records starts with the first record and reads or
writes each record consecutively.

The main users of tape are installations such as department stores and utilities
that require large files that they process sequentially. Many installations use disk
for most general processing and use tape for backing up the contents of the disk
master files at the end of each workday. Consequently, if it is necessary to rerun
a job because of errors or damage, backup tapes are always available.

Characteristics of Tape

The most common width of a reel of magnetic tape is 1/2 inch, and its length ranges
from 200 feet to the common 2,400 feet, with lengths as long as 3,600 feet. A
tape drive records data as magnetic bits on the oxide side of the tape.

Storage format. Data is stored on tape according to tracks. The tape in
Fig. 17-2 shows nine horizontal tracks, each of which represents a particular bit
position. Each vertical set of 9 bits constitutes a byte, of which 8 bits are for data
and 1 bit is for parity.

(parity track)

MW R OO A
—_— OO O = O = OO
— ORI, OOk OO

O OO O R OO

%
o
w

Figure 17-2 Data on tape.

As you can see, the tracks for each of the bits are not in the expected sequence.
The tracks for bits 4 and 5, the least used, are in the outer area where the tape is

448 External Storage Chap. 17

more easily damaged. The first byte, on the left, would appear in main storage
as follows:

Bit value:

101000001

Bit pumber: 01234567P

Storage density. Tape density is measured by the number of stored char-

acters, or bytes, per inch (bpi), such as 800, 1,600, or 6,250 bpi. Therefore, a

2,400-foot reel with a recording density of 1,600 bpi could contain 46 miilion bytes,
which is equal to over a half-million 80-byte records.

Double-density tape stores data onr 18 tracks, representing 2 bytes for each

set of 18 vertical bits.

Tape speed. Tape read/write speeds vary from 36 to 200 or more inches
per second. Thus a tape drive that reads 1,600 bpi records at 200 inches per second
would be capable of reading 320,000 bytes per second. Other high-speed cartridge
drives transfer data at up to 3 million bytes per second.

Tape markers. A refiective strip, called a load point marker, located about
15 feet from the beginning of a tape reel, indicates where the system may begin
reading and writing data. Another reflective strip, an end-of-tape marker, located
about 14 feet from the end of the reel, warns the system that the end of the reel
is near and that the system should finish writing data. Both the load point marker
and the end-oi-tape marker are on the side of the tape opposite the recording
oxide,

Tape File Organization

A file or data set on magnetic tape is typically stored in sequence by control field
or key, such as inventory number. For compatibility with disks, a reel of tape is
know as a volurne. The simplest case is a2 one-volume file, in which one file is
entirely and exclusively stored on one reel (volume).

An extremely large file, known as a multivolume file, requires more than one
reel. Many small files may be stored on a multifile volume, one after the other,
aithough you may have to rewrite the entire reel just to update one of the files.

Unblocked and Blocked Tape Records

As an example of the effect of blocking records on tape, consider a file of 1,000
records each 800 bytes long. Tape density is 1,600 bytes per inch, and each IBG
is 0.6 inches. How much space does the file require given {a) unblocked records
and (b) a blocking factor of 57 Calculate the size of a record of 800 bytes as 80C
+ 1,600 = 0.5 inches.

Magnetic Tape Storage 449
(a) Unblocked records

One block = one record = 800 bytes

Length of one block = 800 bytes/1,600 bpi = 0.5"
Length of one IBG = 0.6
Space required for one block 1.1

Space required for file = 1,000 blocks x 1.1" = 1,100/
(b) Blocked records

One block = five records = 4,000 bytes

Length of one block = 4,000 bytes/1,600 bpi = 2.5"
Length of one IBG = 0.6
Space required for one block 3.1

Space required for file = 200 blocks x 3.1" = 620"

As can be seen, the blocked records require considerably less space because
there are fewer IBGs. '

Standard Labels

Under the various operating systems, tape reels require unique identification. Each
reel, and each file on a reel, usually contains descriptive standard labels supported
by the operating systems (1) to uniquely identify the reel and the file for each
program that processes it and (2) to provide compatibility with other IBM systems
and (to some degree) with systems of other manufacturers.

Installations typically use standard labels. Nonstandard labels and unlabeled
tapes are permitted but are not covered in this text. The two types of standard
labels are volume and file labels. Figure 17-3 illustrates standard labels for one
file on a volume, a multivolume file, and a multifile volume. In the figure, striped
lines indicate IBGs, and TM (for tape mark) is a special marker that the system
writes to indicate the end of a file or the end of the reel.

Volume Labels

The volume label is the first record after the load point marker and describes the
volume (reel). The first 3 bytes contain the identification VOL.. Although some
systems support more than one volume label, this text describes only the common
situation of one label.

On receipt of a new tape reel, an operator uses an IBM utility program to
write a volume label with a serial number and a temporary header file label. When

450 : External Storage Chap. 17

L. A one-volurne file

A
7 - ~N
F [lpodle et Sk

/ \ N Header

T
M

R S

End-of-tape marker

label(s) End-cf-file 1abel(s)
Lo_ad Volume
point Sabel
marker
II. A multi-volume file End-of-volume (abel(s)
Volume-1
o 7 %]
voL Porl AL KEABL B'.;KB’;K BLKEAY oé&
% %
Volume-2
L_| W zZ
VOL%D%BLK%BLK Last f&os’fn .
W

—nA
\
End-of-file Jabel(s}

III. A muly-file volume

Z R 7 Vb W

ek ek Last| [v ST

”D“k T 2 Lk | | [FOF %D 7 nRr
W L W\

»)

VoL EOF|

NN
=]

=~
T

-~

Y ¥
First file Second file

Figure 17-3 Magnetic tape standard labels.

subsequently processing the reel, the system expects the volume label to be the
first record. It checks the tape serial number against the number supplied by the
job control command, TLBL under DOS or DD under OS.

The following describes each field in the 80-byte standard volume label:

POSITIONS NAME DESCRIPTION
01-03 Label identifier Contains VOL to identify the
label.
04 " Volume label number Some systems permit more than

one volume label; this field
contains their numeric
sequence. .
05-10 Volume serial The permanent unigue number
number assigned when the reel is

e

Magnetic Tape Storage 451

POSITIONS NAME DESCRIPTION

received. (The number also
becomes the file serial number
in the header label.)

1 Volume security code A special security code,
supported by OS.

12-41 Unused Reserved.

42-51 Owner’s identification May be used under OS to
identify the owner’s name and
address.

52-80 Unused Reserved.

File Labels

A tape volume contains a file of data, part of a file, or more than one file. Each
file has a unique identification to ensure, for example, that the system is processing
the correct file and that the tape being used to write on is validly obsolete. Two
file labels for each file, a header label and a trailer label, provide this identification.

Header label. A header label precedes each file. If the file requires more
than one reel, each reel contains a header label, numbered from 001. If a reel
contains more than one file, a header label precedes each file. '

The header label contains HDR in the first 3 bytes, the file identification
(such as CUSTOMER RECORDS), the date the file may be deleted, and so forth.
The system expects a header label to follow the volume label immediately and
checks the file identification, date, and other details against information supplied
by job control. .

OS supports two header labels, HDR1 and HDR2, with the second label,
also 80 bytes, immediately following the first. Its contents include the record
format (fixed, variable, or undefined), block length, record length, and density of
writing on the tape.

Trailer label. A trailer label is the last record of every file. (OS supports
two trailer labels.) The first 3 bytes contain EOV if the file requires more than
one reel and the trailer label is the end of a reel but not end of the file. The first
3 bytes contain EOF if the trailer label is the end of the file.

The trailer label is otherwise identical to the header label except for a block
count field. The system counts the blocks as it writes them and stores the total
in the trailer label. Subsequently, when reading the reel, the system counts the
blocks and checks its count against the number stored in the trailer label.

The following describes each field in the standard file label for both header
and trailer labels.

452

POSITIONS
01-03

05-21

22-27

28-31

32-35

36-39

40-4]

42-47

NAME
Label identifier

File label number

File identifier

File serial number

Volume sequence pumber

File sequence number

Generation number

Version number of generation

Creation date

External Storage

Chap. 17

DESCRIPTION

Contains HDR if a
header label, EOF if the
end of a file, or EOV if
the end of a volume.
Specifies the sequence
of file labels for systems
that support more than
one. OS supports two
labels each for HDR,
EOQOF, and EOV.

A unique name that
describes the file.

The same identification
as the volume serial

number for the first or
only volume of the file.

The sequence of volume
numbers for
multivolume files. The
first volume for a file
contains 0001, the
second 0002, and so on.
The sequence of file
numbers for multifile
volumes. The first file
in a volume contains
0001, the second 0002,
and so om.

Each time the system
rewrites a file, it
increments the
generation number by 1
to identify the edition of
the file.

Specifies the version of
the generation of the
file.

The year and day when
the file was written.
The format is byyddd,
where b means blank,

R

L

10CS for Magnetic Tape 453
POSITIONS NAME DESCRIPTION
48-53 Expiration date The year and day when
the file may be

overwritten. The
format is byyddd, where

b means blank.
54 File security code ' A special security code
usad by OS.
5560 Block count Used in trailer labels for

the number of blocks
since the previous

header label.

61-73 System code An identification for the
operating system.

74-80 Unused Reserved.

10CS FOR MAGNETIC TAPE

The system (JOCS for DOS and data management for OS) performs the folowing
functions for input and for output.

Reading a Tape File

The processing for reading a tape file is as follows:

1.

2.

Processing the Volume Label. On OPEN, I0CS reads the volume label and
compares its serial number to that on the TLBL or DD job control entry.
Processing the Header Label. TOCS next reads the header label and checks
that the file identification agrees with that on the job control entry to ensure
that it 1s reading the correct file. For a multivolume fle, the volume sequence
numbers are normaily in consecutive, ascending sequence.

. Reading Records. The GET macro reads records, specifying either a work-

area or JOREG. If the tape records are unblocked, each GET reads one
record (a block) from tape into storage. If records are blocked, IOCS per-
forms the required deblocking.

End-of-Volume. IfIOCS encounters the end-of-volume label before the end-
of-file (meaning that the file continues on another reel), IOCS checks that
the block count is correct. It rewinds the reel, opens a reel on an alternate
tape drive, checks the labels, and resumes reading this new reel. '

. End-of-File. Each GET operation causes IOCS to transfer a record to the

workarea. Omnce every record has been transferred and processed and you

454 External Storage Chap. 17

attempt to perform another GET, IOCS recognizes an end-of-file condition.
It then checks the block count, (usually) rewinds the reel, and transfers control
to your end-of-file address designated in the DTFMT or DCB macro. You
should now CLOSE the tape file. To attempt further reading of a rewound
tape file, you must perform another OPEN,

Writing 2 Tape File
The processing for writing a tape file is as follows:

1. Processing the Volume Label. On OPEN, I0CS checks the volume iabel
(VOL) and compares its serial number to the serial number (if any) on the
job control entry.

2. Processing the Header Label. 10CS next checks the header label for the
expiration date. If this date has passed, IOCS backspaces the tape and writes
a new header (HDR) over the old one, based on data in job control. If this
is a multivolume file, IOCS records the volume sequence number for the
volume. It then writes a tape mark.

3. Writing Records. If the tape records are unblpcked, each PUT writes one
record (a block) from tape into storage. If records are blocked, IOCS per-
forms the required blocking.

4. End-of-Volume. I I10CS detects the end-of-tape marker near the end of the
reel, it writes an EOV trailer label, which includes a count of all blocks written,
followed by a tape mark. Since the reflective marker is on the opposite side
of the tape, data may be recorded through its area. If an alternate tape drive
is assigned, IOCS opens the alternate volume, processes its labels, and re-
sumes writing this new reel.

5. End-of-File. When a program closes the tape file, IOCS writes the last block
of data, if any. The last block may contain fewer records than the blocking
factor specifies. IOCS then writes a tape mark and an EOF trailer Iabel with
a block count. Finally, IOCS writes two tape marks and deactivates the file
from further processing.

DISK STORAGE

A direct access storage device (DASD), which includes magnetic disk storage and
the less common drum storage, is a device that can access any record on a file
directly. Diskettes, a common and familiar storage medium on micro- and mini-
computers, store data in a similar manger. This section describes the details of
the larger magnetic disk devices used in data processing installations.

Each disk storage device contains a number of thin circular plates (or disks)

Disk Storage 455

Tracks

Figure 17-4 Disk surface and
tracks.

stacked one on top of the other. Both sides of each plate (except the outer top
and bottom on some devices) have a coat of ferrous oxide material to permit
recording. As Fig. 17-4 shows, each disk contains circular tracks for storing data
records as magnetized bits. Each track contains the same number of bits (and
bytes) because the bits are spaced more closely together on the innermost tracks.
The disks are constantly rotating on a vertical shaft. As Fig. 17-5 shows, the
disk device has a set of access arms that move read/write heads from track to track.
The heads read data blocks from a disk track into main storage and write dita
blocks from main storage onto a disk track. Because the disks spin continually,
the system has to wait for a required data block to reach the read/write heads.
Disk storage devices permit processing of records both sequentially and ran-
domly (directly). As a result, programs can read unsorted records from a trans-
action file and use them to randomly update matching master records on disk.
Disk storage therefore facilitates online processing where users can at any time
make inquiries into a file and can enter transactions for updating as they occur.

Disks

Comb-type access assembly

Access arms

Read/write heads

/

Figure 17-5 Disk read/write mechanism.

456 External Storage Chap. 17

Disk Format

The amount of data that a disk device can store varies considerably by model,
ranging from small disks with a few million bytes to large disks with more than
one billion bytes. Some disk models use fixed-length sectors on each track to store
one or more records; the system addresses a record by disk number, track number,
and sector number. On other disk models, tracks are not sectored, and records
may be of almost any length; the system addresses records by disk surface number
and track number.

Like magnetic tape, disk storage contains gaps between one block of data
and the next, but the size of the gap is greater on the outermost tracks and smaller
on innermost tracks. You may also store records on disk as unblocked or blocked.
However, because of the fixed capacity of a disk track, the optinmm blocking factor
depends on the record length and track capacity. Special formulas are available
for calculating optimum blocking factors for different disk devices.

As a simplified example, consider a file containing 1,000-byte records and a
disk track with a capacity of 10,000 bytes. If the blocking factor is 5, one block
is 5,000 bytes and you can store two blocks (ten records) on a track. If the blocking
factor is 6, one block is 6,000 bytes and a track has space for only one block {six
records). ,

The storage of data on disk begins with the top outermost track (track 0) and
continues consecutively down, surface by surface, through to the bottom outermost
track. Storage of data then continues with the next inner set of tracks (track 1),
starting with the top track through to the bottom track. The set of vertical tracks
is known as a cylinder. As a result, for sequential processing the system reduces
access motion of the read/write heads: It reads and writes blocks, for example, on
track 5 of every surface (cylinder 5) before moving the arm to cylinder 6.

DISK ARCHITECTURE

The two main types of IBM disk devices are count-key-data (CKD) architecture
and fixed-block architecture (FBA).

CKD Architecture

In this design, records and blocks may be of almost any length, subject to limitations
of the disk device. A count (C) area contains the block size and an optional key
(K) area contains the key of the last record in the block, both of which precede
the actual data (D) area; hence CKD.

If a disk contains 20 surfaces, the outer set of tracks (all track 0) is called
cylinder 0, the next inner vertical set of tracks is cylinder 1, the next is cylinder 2,
and so forth. If the device contains 200 sets of tracks, there are 200 cylinders
numbered 0 through 199, each with 20 tracks.

Disk Architecture) 457

Examples of disk devices using CKD architecture include IBM models 3330,

3340, 3350, and 3380.
The basic format for a track on a CKD device is
Index Home Track Descriptor Data Data
Point Address Record (RO) Record (R1) Record (R2)
(a) (b) (c) (d)

(2) Index Point. The index point tells the read/write device that this point is the
physical beginning of the track.

(b) Home Address. The home address tells the system the address of the track
(the cylinder, head, or surface number) and whether the track is primary,
alternate, or defective.

(¢) Track Descriptor Record (R0). This record stores information about the
track and consists of two separate fields: a count area and a data area. The
count area contains 0 for record number and 8 for data length and is otherwise
similar to the count area described next for data record under item (d). The
data area contains 8 bytes of information used by the system. The track

~ descriptor record is not normally accessed by user programs.
(d) Data Record Formats (R1 through Rn). The users’ data records, or tech-
nically, blocks, consist of the following:

Address Count Key Data
Marker Area Area Area
(optional)

The I/0O control unit stores the 2-byte address marker before each block
of data, which it uses subsequently to locate the beginning of data.
The count area includes the following:

e An identifier field that provides the cylinder and head number (like that in
the home address) and the sequential block number (0-255) in binary, rep-
resenting RO through R255. (The track descriptor record, R0, contains 0
for record number.)

o The key length (to be explained shortly).

e The data length, a binary value 0 through 65,535 that spec:ﬁes the aumber
of bytes in the data area field (the length of your data block). For end-of-
file, the system generates a last dwmmy record containing a length of 0 in
this field. When the system reads the file, the zero length indicates that
there are no more records.

» The optional key area contains the key, or control field, for the records in
the file, sach as part number or customer number. The system uses the key
area to locate records randomly. I the key area is omitted, the file is said

External Storage

458 Chap. 17
CAPACTTY SPEED

Device Ave, seek | Ave, rot’l

Bytes per | Tracks per | Number of Total time delay Data rate

track cylinder | eylinders bytes (ms) {ms) KB/fsec,

3340-1 8368 12 348 35,000,000
3340-2 8368 12 696 70,000,000 25 10.1 885
3344 8368 12 4 X 696 280,000,000
3330-1 13030 19 404 | 100,000,000 }
3330-11 13030 19 808 200,000,000 30 84 806
3350 19069 30 555 317,500,000 25 84 1200
3375 35616 12 2 X959 819,738,000 19 101 1859
3380 47476 15 2 X885 [1,260,500,000 16 8.3 2000

Figure 17-6 Capacity table for CKD devices.

to be formatted without keys and is stored as count-data format. The key
length in the count area contains 0. If the file is formatted with keys, it is
stored as count-data format. The key length in the count area contains the
length of the key area.
¢ The data area contains the users’ data blocks, in any format, such as unblocked
or blocked and fixed or variable length. The system stores as many blocks
on a track as possible, usually complete and intact on a track. A record over-
flow feature permits the overlapping of a record from one track to the next.

Figure 17-6 provides the capacities and speeds of a number of IBM CKD

devices.

Under normal ¢ircumstances, you won’t be concerned with the home address,
the track descriptor record, or the address marker, count area, and key area
portions of the data record field. You simply provide appropriate entries in your
file definition mdcros and job control commands.

Fixed-Block Architecture

In this design, the recording tracks contain equal-length blocks of 512 bytes, al-
though your records and blocks need not fit a sector exactly.

Figure 17-7 provides the details for two disk models using fixed-block archi-

tecture, the 3310 and 3370.
Device Bytes per Blocks per Number of Tracks per Total
Block Track Cylinders Cylinder Bytes
3310 512 32 358 11 64,520,192
3370 512 62 2 x 750 12 571,392,000
Figure 17-7 Capacity table for FBA devices.

e

Disk Capacity 459
DISK CAPACITY

Knowing the length of records and the blocking factor, you can calculate the number
of records on a track and on a cylinder. Knowing the number of records, you can
also calculate the number of cylinders for the entire file. Based on the values in
Fig. 17-8, the formulia for the number of blocks of data per track is

track capacity -
overhead + C + KL + DL

In the formula, Cis a constant overhead value for keyed records, KL means key
length, and DL is data {block) length. These values vary by disk device, as shown

Blocks per track =

in Fig. 17-8.
Device Maximum Bne Data Block Key Overhead Track
Capacity Capacity
(bytes)
3330 132,030 135 + € + KL + DL C = 0 when KL = 0 .13,1868
: € = 56 when KL = 0 -
3340 8,368 167 + € + KL +« DL C = 0 when KL = 0 8,535
€ = 75 when KL = 0
3350 19,089 - 185 + € + KL + DL C =0 when KL = 0 18,254
C = 82 when KL = 0 -

Figure 17-8 Track capacity table.

The following two examples llustrate.
Example 1. Device is a 3350, records are 242 bytes, five records per block
(block size = 1,210}, and formatted without keys:

19,254 _L2se o
185 + (5 x 242} 1,395 :

blocks per track X blocking factor
5% 13 =65

Blocks per track

Records per track

Example 2. Same as Example 1, but formatted with keys (key length is
12):

19,254 _ 19,254
185 + 82 + 12 + 1,210 1,489

Records per track = 5 X 12= 60

Blocks per track = = 12.93

Note that a disk stores a full block, not a fraction of one. Therefore, even
if you calculate 13.8 or 12.9 blocks per track, the disk stores only 13 or 12 blocks,
respectively.

460 External Storage Chap. 17

Yo determine the number of records on a cylinder, refer to Fig. 17-6, which
discloses that a 3350 has 30 tracks per cylinder. Based on Example 1 where the
number of records per track is 65, a cylinder on the 3350 could contain 65 X 30
= 1,950 records.

Using these figures, you can now calculate how much disk storage a file of,
say, 100,000 of these records would require. Based on the figure of 1,950 records
per cylinder, the file would require 100,000 + 1,950 = 51.28 cylinders.

DISK LABELS

Disks, like magnetic tape, also use labels to identify a volume and a file. The
system reserves cylinder 0, track 0 for standard labels, as Fig. 17-9 shows. The
following describes the contents of track 0:

Record 0: The track descriptor, R(0) record.

Records 1 and 2: If the disk is SYSRES, which contains the operating system,
certain devices reserve R(1) and R(2) for the initial program load (IPL)
routine. For all other cases, R(1) and R(2) contain zeros.

Record 3: The VOLI1 label. OS supports more than one volume label, from
R(3) through R(10).

Record 4 through the end of the track: The standard location for the volume
table of contents (VTOC). The VTOC contains the file labels for the files
on the device. Although you may place a VITOC in any cylinder, its standard
location is cylinder 0, track 0.

Volume Labels

The standard volume label uniquely identifies a disk volume. A 4-byte key area
immediately precedes the 80-byte volume data area. The volume label is the fourth
record (R3) on cylinder 0. The 80 bytes are arranged like a tape volume label,
with one exception: Positions 1221 are the “data file directory,” containing the
starting address of the VTOC.

Cylinder-0, Track-0

Track . Formai-4 | Format-5 | Format-1 .
Descripr | 2705 | 2705 |VOL 7y apel Label | Label#1 | 2 | #3 | #
Record 0 1 2 3 4 5 6 7 8 9

¥)

h
Volume label VTOC File labels

Figure 17-9 Disk volume layout.

Disk Labels 461
File Labels

File labels identify and describe z file, or data set, on a volume. The file label
is 140 bytes long, consisting of a 44-byte key area and a 96-byte file data area.
Each file on a volume requires a file label for identification. In Fig. 17-9, all file
labels for 2 volume are stored together in the VIOC. There are four types of file
labels: :

1. The format 1 label is equivalent to a file label on tape. The format 1 label
differs, however, in that it defines the actual cylinder and track addresses of
each file’s beginning and end (its extent). Further, a file may be stored intact
in an extent or in several extents in the same volume. Format 3 is used if a
file is scattered over more than three extents.

2. The format 2 label is used for indexed sequential files.
3. The format 3 label is stored if a file occupies more than three extents.
4. The format 4 label is the first record in the VTOC and defines the VTOC

for the system.

The format 1 file label contains the following information:

POSITION NAME DESCRIPTION)
01-44 File identification Unique identifier comsisting of file
ID, optional generation number,
and version number, separated by
periods.
45 Format identifier *1” for format 1.
46-51 File serial Volume serial number from the
number volume labei.
52-53 Volume sequence Sequence number if the file is
number stored on more than one volume.
54-56 ~ Creation date ydd {binary): y = year (0—99) and
dd = day (1-366).
57-59 Expiration date Same format as creation date.
60 Extent count Number of extents for this file on
number this volume.
61 Bytes used in last Used by OS.
block of directory
62 Unused Reserved.
63-75 System code Name of the operating system.
76-82 Unused Reserved. '
83-84 File type Code to ideniify if SD (sequential),

POSITION

85
86

87-88
85-90
91

92-93

94

95-98
99-103

104-105
106
107

108-111
112~-115

116-125
126--135
136~140

NAME

Record format
Option codes

Block length
Record length
Key length
Key location

Data set
indicators

Last record
pointer
Unused
Extent type

Extent sequence

number
Extent lower
limit

Extent upper
limit

Pointer

External Storage Chap. 17

DESCRIPTION

DA (direct), or IS (indexed) file
organization.

Used by OS.

ISAM-—indicates if master index is
present and type of overflow area.
ISAM—Ilength of each block.
ISAM—Ilength of each record.
ISAM—Ilength of key area.
ISAM—position of key within the
record. _
SD—indicates if last volume.

Used by OS.
Used by OS.

Reserved.

Descriptors for the first or
only extent for the file.

Descriptors for a second extent.
Descriptors for a third extent.
Address of the next label.

KEY POINTS

Sequential file organization provides only for sequential processing of records.
Indexed and direct organization provides for both sequential and random
processing of records.
At the beginning of the tape reel is a volume label, which identifies the reel
being used. Immediately preceding each file on the tape is a header label,
which contains the name of the file and the date the file was created. Fol-
lowing the header label are the records that comprise the data file. The last
record is a trailer label, which is similar to the header label but also contains
the number of blocks written on the reel.

s

Chap.

17 Problems 463

To keep track of all the files it contains, a disk device uses a special directory
(volume table of contents, VITOC) at the beginning of its storage area. The
directory includes the names of the files, their locations on disk, and their
present status.

If you define a tape or disk field as packed on an IBM system, the field
contains two digits per byte plus a half-byte for the sign.

e The set of vertical tracks on a disk device is known as a cylinder.

17-1.

17-2.

17-3.
174.

17-5.

17-6,

An interblock gap (IBG) separates each block of data from the next on tape
and disk. The length of an IBG on tape is 0.3 to 0.6 inches depending on
the device, and the length of an YBG on disk varies by device and by track
location. The IBG defines the start and end of each block of data and
provides space for the tape when the drive stops and restarts for each read
Or write.

Blocking of records helps conserve space on storage devices and reduces the
number of input/output operations. The number of records in a block is
known as the blocking factor.

The system reads an entire block into the computer’s storage and transfers
one record at a time to the program.

All programs that process a file shonld vse the same fecord length and blocking
factor.

Records and blocks may be fixed in length, where each has the same length
throughout the entire file, or variable in length, where the length of each
record and the blocking factor are not predetermined.

The two main types of disk devices are count-key-data (CKD) architecture,
which stores records according to count, key, and data area, and fixed-block
architecture (FBA), which stores data in fixed-length blocks.

PROBLEMS

Distinguish the differences among sequential, direct, and indexed sequential orga-
nization methods.

Explain each of the following: (a) tape density; (b) tape markers; (c) IBG; (d) fixed
length and variable length; () biocking factor.

Give an advantage and a disadvantage of increasing the blocking factor.

‘What is the purpose of each of the following: (a) volume Iabel; (b) header label; (c)
trailer label?

Distinguish between each of the following: (a) EOV and EOF oz a trailer label; (b)
a multifile volume and a multivoleme file; (¢) volume sequence number and file
sequence number.

What is the advantage of disk storage over magnetic tape?

464 External Storage Chap. 17

17-7. Based on Fig. 17-6, how many bytes can be stored on a cylinder for each device
Iisted?
17-8. Why does a disk device store data vertically by cylinder rather than by tracks across
a surface?
17-9. Explain the purpose of (a) the home address; (b) the track descriptor record; (c) the
key area.
17.10. What is the difference between 2 CKD disk and an FBA disk?
17-11. What are the purpose, location, and contents of the VIOC?
17-12. What is the disk eqtiivalent of the magnetic tape keader label; that is, what is its
location and how does it differ?
17-13. Assume disk device 3350, record length 300 bytes, and six records per block. - Based
on the data in Fig. 17-8, calculate the number of records that a track can store for

the following: (a) records formatted without keys; (b) records formatted with keys,
key length = 10.

J
N

18

SEQUENTIAL FILE
ORGANIZATION

OBJECTIVE
To cover sequential file organization and its
processing requirements.

In this chapter, you examine sequential file organization for DOS and OS and
learn how to create and read such files. You will also exanmyne the defipition and
processing of variable-length records.

The processing of sequential files involves the same imperative macros
used up to now: OPEN, CLOSE, GET, and PUT. IOCS (data management)
handles all the necessary label processing and biocking and deblocking of records.
Other than job control commands, the only major difference is the use of blocked
records.

An installation has to make a (perhaps arbitrary) choice of a blocking factor
when a file is created, and all programs that subsequently process the file define
the same blocking factor. A program may also define one or more I/O buffers;
if records are highly blocked, a second buffer involves more space in main storage
with perhaps little gained in processing speed.

466 Sequential File Organization Chap. 18

CREATING A TAPE FILE

The first two examples create a tape file for DOS and OS. The programs accept
input data from the system reader and write four records per block onto tape.

For both programs, OPEN checks the volume label and header label, and
CLOSE writes the last block (even if it contains fewer than four records) and writes
a trailer label.

DOS Program to Create a Tape File

The DOS DTEMT file definition macro defines a magnetic tape file. You define
a DTFMT macro with a unique name for each tape input or output file that the
program processes. The parameters that you code are similar to those for the
DTFCD and DTFPR macros covered earlier. :

In Fig. 18-1, the program reads records into RECDIN and transfers required
fields to a tape workarea named TAPEWORK. The program then writes this
workarea to a tape output file named FILOTP. Based on the BLKSIZE entry in
the DTEMT, 10CS blocks four records before physically writing the block onto
tape. Thus for every four input records that the program reads, IOCS writes one
block of four records onto tape. '

1 PRINT ON,NODATA,NOGEN

2 PROGLS8A START

3 BALR 3,0 INITIALIZE BASE REGISTER
4 USING *,3

5 OPEN FILEIN,FILEOTP ACTIVATE FILES

14 GET FILEIN,RECDIN READ 1ST RECORD
20 ALOLOOP BAL 9,BLOFROC

21 GET FILEIN,RECDIN READ NEXT

27 B ALOLOOP

29 * END-OF-FILE

30 A9CEOF CLOSE FILEIN,FILEOTP DE-ACTIVATE FILES
39 EOJ NORMAL END-OF-JOB
43 *xx MAIN PROCESSING

45 B1OPROC MVC ACCTTPO,ACCTIN MOVE INPUT FIELDS
46 MVC NAMETPO,NAMEIN * TO WORK AREA
a7 MVC ADDRTFOQ,ADDRIN *

48 PACK BALNTPO,BALNIN *

49 MVC DATETPO,DATEIN *

50 PUT FILEOTP, TAPEWORK WRITE TAPE WORKAREA
56 BR 9 RETURN

58 * DECLARATIVES

60 PILEIN DTFCD DEVADDR=SYSIPT, INPUT FILE

IOAREAL=IOBRRINL,
BLKSIZE=80,
DEVICE=2540,
EQFADDR=A90ECF,
TYPEFLE=INPUT,
WORKA=YES

Figure 18.1 Program: writing a tape file under DOS.

A+

Creating a Tape File 467
85 IOARIN1 ©DC CL80" INPUT BUFFER 1
87 RECDIN DS 0CL80 INPUT AREA:
88 CODEIN DS CLO2 01-02 RECORD CODE
89 ACCTIN DS CLOG 03-08 ACCCUNT NO.
90 NAMEIN DS CL20 09-28 NAME
91 ADDRIN DS CL40 29-68 ADDRESS
92 BALNIN DS ZL06*0000.00" 69-74 BALANCE
93 DATEIN DS CLO6 * DDMMYY ' 75-80 DATE
95 FILEOTF DTFMT BLKSIZE=360, TAFE FiILE +
DEVADDR=SYS025, ‘ +
FILABL=STD, +
IOAREA]1=IQARTPOL, +
IOAREAZ=IQARTPOZ, +
RECFORM=FIXBLK, +
RECSIZE=90, +
TYPEFLE=0UTPUT, +
WORKA=YES
132 IOARTPOL DS CL360 TAPE BUFFER-1
133 IOARTPO2 DS CL360 TAPE BUFFER-2
135 TAPEWQRK DS 0CL90 TAPE WORK AREA:
136 ACCTTPO DS CLO6 01-06 ACCOUNT NO.
137 NAMETPO DS CL20 07-26 NAME
138 ADDRTPO DS CL40 27-66 ADDRESS
139 BALNTPO DS PLO4 67-70 BALANCE
140 DATETPO DS CLO6 71-76 DATE
141 DC CL14* 77-90 RESERVED
143 LTORG -
144 =C*SSBOPEN °
145 =C' $SSBCLOSE'
146 =3 (FILEIN)
147 =A(RECDIN)
148 =A(FILEOTP)
149 =A (TAPEWORK)
150 END PROG18A

Figure 18-1 (continued)

The following explains the DTFMT entries:

BLKSIZE =360 means that each block to be written from the IOAREA 1is
360 bytes long, based on four records at 90 bytes each.

DEVADDR =SYS025 denotes the logical address of the tape device that is to
write the file.

FILABL =STD indicates that the tape file contains standard labels, as de-
scribed in Chapter 17.

IOAREA1 and IOAREA? are the two IOCS buffers, each defined with the
same length (360) as BLKSIZE. If your blocks are especially large, you may
omit defining a second buffer to reduce program size.

RECFORM =FIXBLK defines output records as fixed-tength and blocked.
Records on tape and disk may also be variable-length or unblocked.
RECSIZE =9 means that each fixed-length record is 90 bytes in length, the
same as the workarea.

468 Sequential File Organization Chap. 18

TYPEFLE =QUTPUT means that the file is output, that is, for writing only.
Other options are INPUT and WORK (for a work file).

WORKA =YES means that the program is to process output records in a
workarea. In this program, TAPEWOQRK is the workarea and has the same
length as RECSIZE, 90 bytes. Alternatively, you may code IOREG and
use the macro PUT FILEOTP with no workarea coded in the operand.

The DTFMT file definition macro for tape input requires an entry
EOFADDR =address to indicate the name of the routine where IOCS links on
reaching the end of the tape file.

OS Program to Create a Tape File

For OS, you define a DCB macro with a unique name for each tape input or output
file that the program processes. The parameters that you code are similar to those
for the DCB macros covered earlier.

In Fig. 18-2, the program reads records into RECDIN and transfers required
fields to a tape workarea named TAPEWORK. The program then writes this
workarea to a tape output file named FILOTP. Based on the BLKSIZE entry in
job control, the system blocks four records before physically writing the block onto
tape. Thus for every four input records that the program reads, the system writes
one block of four records onto tape.

//GO.TAPEOT DD DSNAME=TRFILE,DISP=(NEW,PASS),UNIT=3420, +
DCB=(BLKSIZE=360,RECFM=FB,DEN=3)
~3-—__. DD for tape
cutput data set

//GO.8SYSIN DD * <~-- DD for input file
PROG188 START

SAVE (14.,12)

BALR 3.0

USING *,3

8T 13,SAVEAREA+4

LA 13,SAVEAREA

OPEN (FILEIN, (INPUT} ,FILEOTP, (OUTPUT))

GET FILEIN,RECDIN READ 15T RECORD
Fekk MAIN PROCESSIRNG
AJOLOOP MVC ACCTTPO,ACCTIN MOVE INPUT FIELDS TO TAPE
MVC NAMETPO , NAMEIN * WORK AREA
MVC ADDRTPO,ADDRIN *
PACK BALNTPO,BALNIN *
MVC DATETPO,DATEIN *
PUT FILEOTP, TAPEWORK WRITE WORK AREA ONTO TAPE
GET FILEIN,RECDIN | READ NEXT RECOED
B AIQLOOP
* END-QOF-FILE

A90EQOF CLOSE (FILEIN, ,FILEOTP)
L 13,SAVEAREA+4
RETURN (14.,12)

Figure 18-2 Program: writing a tape file under OS.

Creating a Tape File 469

* DECLARATIVES

FILEIN DCB DDNAME=SYSIN, DCB FOR INPUT DATA SET +

: DEVD=DA, +
DSORG=PS, +
EODAD=AS0ECF, +
MACRF=(GM)

RECDIN DS 0CLB0 INPUT RECORD AREA:

CODEIN DS cLo2 | 01-02 RECORD CODE

ACCTIN DS CLO6 03-08 ACCOUNT NO.

NAMEIN DS CL20 09-28 NAME

ADDRIN DS CL40 29-68 ADDRESS

BALNIN DS ZL06'0000.00* 69-74 BALANCE

DATEIN DS CLO6 ' DDMMYY * 75-80 DATE

FILEOTP DCB DDNAME=TAPECT, DCB FOR TAPE DATA SET +
DSORG=FS, +
LRECL=90, - +
MACRP= (M)

TAPEWORK DS 0CL90 TAPE WORK AREA:

ACCTTPO DS CLO6 01-06 ACCOUNT NO.

NAMETPO DS CL20 07-26 NAME

ADDRTPO DS CL40 27-66 ADDRESS

BALNTPO DS PLO4 67-70 BALANCE(PACKED)

DATETPO DS CLO6 71-76 DATE

DC CLl4' ° 77-90 RESERVED
SAVEAREZ DS 18F REGISTER SAVE AREA
’ LTORG

END PROG18B
Figure 18-2 (continued)

The DD job commands for the files appear first in the job stream and provide
some entries that could also appear in the DCB. This common practice enables
users to change entries without reassembling programs. The DD entries for the
tape file, TAPEOT, are as follows:

DSNAME =TRFILE provides the data set name,

DISP ={(NEW,PASS) means that the file is new (to be created) and is to be
kept temporarily.

UNIT = 3420 provides the tape drive model.

BLEKSIZE =360 means that each block to be written from the IOAREA is
360 bytes long, based on four records at 90 bytes each.

RECFM=FB defines output records as fixed-length and blocked. Records
on tape and disk may also be variable-length (V) or unblocked.

DEN =3 indicates tape density as 1,600 bpi. (DEN=2 would mean 800 bpi.)

470 Sequential File Organization Chap. 18
The following explains the DCB entries:

DDNAME =TAPEOT relates to the same name in the the DD job control
command:

//GD.TAPEDT .

DSORG =PS defines output as physical sequential.
LRECL=90 provides the logical record length for each record.
MACRF=(PM) defines the type of output operation as put and move from

a workarea. MACRF=(PL) would aliow you to use locate mode to process
records directly in the buffers.

The DCB ‘file definition macro for tape input requires an entry
EOFADDR =address to indicate the name of the routine where IOCS links on
reaching the end of the tape file.

Also, another DCB entry, EROPT, provides for an action if an input op-
eration encounters problems. The options are as follows:

=ACC Accept the possibly erroneous block of data.
=SKFP Skip the data block entirely and resume with the next one.

=ABE Abend (abnormal end of program execution), the standard de-
fault if you omit the entry.

ACC and SKP can use a SYNAD entry for printing an error message and
continue processing. If the error message routine is named R10TPERR, the DCB
coding could be

ERDPT=SKP,
SYNARD=R10TPERR

Since the use of ACC and SKP may cause invalid results, it may be preferable
for important production jobs to use ABE (or allow it to default). See the OS
supervisor manuals for other DCB optioss.

CREATING A SEQUENTIAL DISK FILE

The next two examples create a disk file for DOS and OS. The programs accept
Input data from the system reader -and write four records per block onto disk.

For both programs, OPEN checks the disk label, and CLOSE writes the last
data block (even if it contains fewer than four records) and writes a last dummy
block with zero length.

DOS Program to Create a Sequential Disk File

The DOS file definition macro that defines a sequential disk file is DTFSD. The
parameters that you code are similar to those for the DTFMT macro.

Creating a Sequential Disk File

471

The program in Fig. 18-3 reads the tape records from the file created in Fig.
18-1 and transfers required fields to a disk workarea named DISKWORK. The
program then writes this workarea to a disk output file named SDISK. Based on

1 PRINT ON,NODATA ,NOGEN
2 PROC1SB START
3 BALR 3,0
4 USING *,3
5 OPEN TAPE,SDISK
14 GET TAPE,TAPEIN READ 1ST RECORD
20 ALQOLOOP BAL 9,B10PROC
21 GET TAPE,TAPEIN READ NEXT RECORD
27 B ALOLOOF
29 * MAIN PROCESSING
30 B1OFROC MVC ACCTDKO,ACCTIN MOVE FIELDS TO DISK
31 MVC NAMEDKO,NAMEIN * WORK AREA
32 MVC ADDRDKO,ADDRIN *
33 ZAP BALNDKO,BALNIN *
34 MVC DATEDKO,DATEIN *
35 PUT SDISK,DISKWORK WRITE WORK AREA
41 BR 9
43 * END-OF-FILE
44 A90ENP CLOSE TAPE,SDISK
53 EOJ
57 % DECLARATIVES .
58 TAPE DTEMT BLKSIZE=360, TAPE FILE +
DEVADDR=SYS025, +
EQFADDR=A90END, +
ERROPT=IGNORE , +
FILABRL=STD, +
IOAREA1=IOARTPIL, +
RECFORM=FIXBLK, +
RECSIZE=090, +
TYPEFLE=INPUT, +
WORKA=YES
96 IOARTPI1 DS CL360 INPUT TAPE BUFFER
98 TAPEIN DS OCLSO TAPE INPUT AREA:
89 ACCTIN DS CL6 * ACCOUNT NO.
100 NAMEIN DS CL20 * NAME
101 ADDRIN DS CL40 * ADDRESS
102 BALNIN DS PL4 * BALANCE
103 DATEIN DS CL6G 'DDMMYY ' * DATE
104 DS CLis * UNUSED
106 SDISK DTIFSD BLRSIZE=368, DISK FILE +
DEVADDR=SYS015, +
DEVICE=3380, +
I0AREAL=TOARDK, +
RECFORM=FIXBLK, +
RECSIZE=90, +
TYPEFLE=CUTPUT, +
VERIFY=YES, +
WORKA=YES
172 IOARDK DS CL368 DISK BUFFER
174 DISKWORK DS 0CL90 DISK WORK AREA:
175 ACCTDKO DS CLO6 * ACCOUNT NO.

Figure 18-3 Program: writing a sequential disk file under DOS.

472 Sequential File Organization Chap. 18
176 NAMEDKO DS CL20 * NAME
177 ADDRDKQ DS CL40 * ADDRESS
178 BALNDKO DS PLO4 * BALANCE
179 DATEDKO DS CLO6 * DATE
180 e cLi4* * RESERVED
181 LTORG
182 =C* SSEOPEN '

183 =C"'SSBCLOSE"
184 =A(TAPE)

185 =A(TAPEIN)
186 =A (SDISK)
187 =A(DISKWORK)
188 END PROG1SB

// EXEC LNKEDT

// TLBL TAPE,'CUST REC TP',0,100236

// ASSGN S¥S015,DISK,VOL=SVSEO3,SHR

// DLBL SDISK,'CUSTOMER RECORDS SD',0,SD
// EXTENT SYS015,ATMP70,1,0,3,4

Figure 18-3 (continued)

the BLKSIZE entry in the DTFMT and DTFSD, the system both reads and writes
blocks of four records, although the two blocking factors need not be the same.
The following explains the DTFSD entries:

BLKSIZE =368 means that the blocksize for output is 360 bytes {4 x 90) plus
8 bytes for the system to construct a count field. You provide for the extra
8 bytes only for output; for input, the entry would be 360.

DEVICE =3380 means that the program is to write blocks on a 3380 disk
device.

VERIFY =YES tells the system to reread each output record to check its
validity. If the record when reread is not identical to the record that was
supposed to be written, the system rewrites the record and performs another
reread. If the system eventually cannot perform a valid write, it may advance
to another area on the disk surface. Although this operation involves more
accessing time, it helps ensure the accuracy of the written records.
DEVADDR, IOAREA1, RECFORM, RECSIZE, TYPEFLE, and WORKA
are the same as for previous DTFs. You omit the FILABL entry because
disk labels must be standard.

If you omit the entry for DEVADDR, the system uses the SYSnnn address
from the job control entry.

OS Program to Create a Sequential Disk File

For OS, you define a DCB macro with a unique name for each disk input or output
file that the program processes. The parameters that you code are similar to those
for the DCB macros covered eatlier.

The program in Fig. 18-4 reads the tape records from the file created in Fig.

-

.\\#/,

Creating a Sequential Disk File 473

//GO.TAPEIN DD DSNAME~TRFILE,DISP=(OLD,PASS) ,UNIT=3420, +
DCB= (BLESIZE=360 ,RECFM=FB , DEiN=3 }

//GO.DISKOT DD DSNAME=ZTEMPDSK,DISP=(NEW,PASS),UNIT=3380,SPACE=({TRK,10}, +
DCB=(BLESIZE=360 ,RECFM=FB)

FROG1S8D START ©
SAVE (14,12)
BALR 3,0
USING *,3
ST 13,SAVEAREA+4
LA 13,SAVEAREA
OPEN (TAPE, { INPUT),SDISK, (OUTPUT))

GET TAPE READ 1ST TAPE RECORD
*kx MAIN PROCESSING
ALOLOOP MVC TAPEIN,O(1) MOVE FROM TAPE BUFFER
MVC ACCTPKO,ACCTIN MOVE TAFE FIELDS TO DISK
MVC NAMEDKO , NAMEIN * WORK 2ARER
MVC ADDRDERO,ADDRIN =
ZAP BALNDEKO , BALNIN *
MVC DATEDKO, DATEIN *
PUT SDISK ,DISEKWORK WRITE WORK AREA ONTO DISK
GET TAPE READ NEXT TAPE RECORD
B Al1OLOOP
bt d END-OF-FILE
ASQEND CLOSE (TAPE,,SDISK)
L 13,5AVEAREA+4
RETURN (14,12)
*Ex DECLARMATIVES
TAPE DCE DDNAME=TAPEIN, TAPE INPUT DATA SET +
DSORG=PS, +
EODAD=A90END, +
LRECL=50, +
MACRF=(GL)
TAPEIN DS 0CL90 TAPE INPUT AREA:
ACCTIN DS CLO6 * ACCOUNT NO.
NAMEIN DS CL20 * NAME
ADDRIN DS CL40 * ADDRESS -
BALNIN DS PLO4 * BALANCE (PACKED)
DATEIN DS CLO6 'DDMMYY * * DATE
DS CL1l4 * UNUSED
SDISK DCB DDNAME=DISKOT, DISK QUTPUT DATA SET +
DSORG=PS, ' +
LRECL=90, +
MACRF=(PM)

DISKWORK DS OCLSO DISK WORK AREA:
ACCTDKO DS CLO6 * ACCOUNT NO.
NAMEDEQ PS CL20 . * NAME
ADDRDKO DS CL40 * ADDRESS
BALNDKO DS PLO4 * BATLANCE (PACKED)
DATEDKO DS CLO6 * DATE

*

DC CL14"*' ' RESERVED FOR EXPANSION
SAVEAREA DS 18F REGISTER SAVE AREA
. LTORG

END PROG18D

Figure 18-4 Program: writing a sequential disk file under OS.

474 . Sequential File Organization Chap. 18

18-2 and transfers required fields to a disk workarea named DISKWORK. The
program then writes this workarea to a disk output file named SDISK. Based on
the BLKSIZE entry in job control, the system both reads and writes blocks of four
records, although the two blocking factors need not be the same.

The DD entries for the disk file, DISKOT, are as follows:

DSNAME = &TEMPDSK provides the data set name.

DISP=(NEW,PASS) means that the file is new and is to be kept temporarily.
UNIT=23380 provides the disk drive model.

SPACE = (TRK,190) allocates ten tracks for this file.

BLESIZE =360 means that each biock to be written from the buffer is 360
bytes long, based on four records at 90 bytes each. ‘

RECFM =FB defines output records as fixed-length and blocked. Records
on disk may also be variable-length (V) or unblocked.

The following explains the DCB entries:

DDNAME =DISKOT relates to the same name in the the DD]:ob control
command: '

//GO.DISKOT ...

DSORG =PS defines output as physical sequential.
LRECL =90 provides the logical record length for each record.

MACRF =(PM) defines the type of output operation as put and move from
a workarea. MACRF = (PL) would allow you to use locate mode to process
records directly in the buffers.

The DCB file definition macro for disk input requires an entry
EQFADDR =address to indicate the name of the routine where the system links
on reaching the end of the disk file.

VARIABLE-LENGTH RECORDS

Tape and disk files provide for variable-length records, either unblocked or blocked.
The use of variable-length records may significantly reduce the amount of space
required to store a file. ‘However, beware of trivial applications in which variations
in record size are small or the file itself is small, because the system generates
overhead that may defeat any expected savings.

A record may contain one or more variable-length fields or a variable number
of fixed-length fields.

1. Variable-Length Fields. For fields such as customer name and address
that vary considerably in length, a program could store only significant characters

N

Variable-Length Record Format 475

and delete trailing blanks. One approach is to follow each variable field with a
special delimiter character such as an asterisk.

The following example llustrates fixed-length name and address of 20 char-
acters each, compressed into variable length with an asterisk replacing trailing

blanks:
Fixed length: Norman Bates........ Bates Motel.........
Variable length: Norman Bates:*Bates Motels

To find the end of the field, the program may use a TRT instruction to scan
for the delimiter. Another technique stores a count of the field length immediately
preceding each variable-length field. For the preceding record, the count for the
name would be 12 and the count for the address would be 11:

[12 | Norman Bates |11 |Bates Motel|]

2. Variable Number of Fixed-Length Fields. Records may contain a variable
number of fields. For example, an electric utility company may maintain a large
file of customer records with a fixed portion containing the customer name and
address and optional subrecords for their electric account, natural gas account, and
budget account.

VARIABLE-LENGTH RECORD FORMAT

Immediately preceding each variable-length record on tape or disk is a 4-byte record
control word (RCW) that supplies the length of the record. Immediately preceding
each block is a 4-byte block control word (BCW) that supplies the length of the
block. As a consequence, both records and blocks may be vaniable length. You
have to supply a maximum block size into which the system is to fit as many records
as possible.

Unblocked Records

Variable-length records that are unblocked contain a BCW and an RCW before
each block. Here are three unblocked records:

| BCW{RCH | record 1| ... |BCW|RCW record 2]...|BCH|RCKW record 3|

Suppose that three records are to be stored as variable-length unblocked. Their
lengths are 310, 260, and 280 bytes, respectively:

Field: BCW|RCW/lrecord | |BCW|RCW| record |iBCW|RCW |record
Length: 4 4 310 4 4 260 4 4 280
Contents: 318 | 314 |record 1|{ 268 |264 record 2| | 288 | 284 |record 3

476 Sequential File Organization Chap. 18

The RCW contains the length of the record plus its own length of 4. Since the
first record has a length of 310, its RCW contains 314. The BCW contains the
length of the RCW(s) plus its own length of 4. Since the only RCW contains a
length of 314, the BCW contains 318.

Blocked Records

Variable-length records that are blocked contain a BCW before each block and an
RCW before each record. The following shows a block of three records:

| BCW | RCW] record 1]RCW|record 2 |RCH| record 3

Suppose that the same three records with iengths of 310, 260, and 280 bytes
are to be stored as variable-length blocked and are to fit into a mazimum block
size of 900 bytes:

Field: BCWIRCW)| record |RCW| record |RCWirecord
Length: 4 4 310 4 269 4 280
Contents: 866 | 314 |record 1l | 264 |record 2 | 284 {record 3

The length of the block is the sum of one BCW, the RCWs, and the record lengths:

Block control word: 4 bytes
Record control words: 12
Record lengths: +850
Total length: 866 bytes

The system stores as many records as possible in the block up to (in this example)
900 bytes. Thus a block may contain any number of bytes up to 900, and both
blocks and records are variable length. The system automatically handles all
biocking, unblocking, and control of BCWs.

Your BLKSIZE entry tells the system the maximum block length. For ex-
ample, if the BLKSIZE entry in the preceding example specified 800, the system
would fit only the first two records in the block, and the third record would begin
the next block.

Programming for Variable-Length Records

Althongh IOCS performs most of the processing for variable-length records, you
have to provide the record length. The additional programming steps are con-
cerned with the record and block length:

Variable-Length Record Format 477

Record length. As with fixed-length records, a program may process var-
iable-length records in a workarea or in the buffers (VO areas). You define the
workarea as the length of the largest possible record, including the 4-byte record
control word. When creating each record, calculate and store the record length
in the record control word field. This field must be 4 bytes long, with the contents
in binary format, as

VARRCW DS | F
DOS uses only the first 2 byies of this field.

Block length. You define the I/0O area as the length of the largest possible
block, including the 4-byte block control word. On output, JOCS stores as many
complete records in the block as will fit. IOCS performs all blocking and calcu-
lating of the block length. On input, IOCS deblocks all records, similar to its
deblocking of fixed-length records.

Sample Program: Reading and Printing Variable-Length
Records

Consider a file of disk records that contains variable-length records, with fields
defined as follows:

01-04 Record length
05-09 Account number
10-82 Variable name and address

To indicate the end of a name, it is immediately followed by a delimiter, in this
case a plus sign (hex "4E’). Another delimiter terminates the next field, the
address, and a third terminates the city. Here is a typical case:

JP Programmer+1425 North Basin Sireet+Kingstown+

The program in Fig. 18-5 reads and prints these variable-length records. Note
that in the DTFSD, RECFORM =VARBLK specifies variable blocked. The pro-
gram reads each input record and uses TRT and a loop to scan each of the three
variable-length fields for the record delimiter. It calculates the length of each field
and uses EX to move each field to the output area. The program also checks for
the absence of a delimiter.

Qutput would appear as

JP Programmer
1425 North Basin Street
Kingstown

478

(L N L

14

23
24
30
.32
34
43

47
49
50
51
52
53
55
56
57
58
59
60
61
62
68
69
70
71
72
73
72
80

82

84
86
87
88

90

154
155
156

158
158

PROG18C

Kk
ALOLOCP

*

A90EQF

BlOSCAN

B20

B30

M1OMOVE

SCANTAB

FILEIDR

IOARDKIL
IOARDKI2

¥*

PRINT
START

USING
OPEN

aHEE BE “BE 8

MVC
TRT
BZ

BEE EABERERALE

MVC

DTFSD

DS
DS
DS

DS

Sequential File Organization Chap. 18
O, NODATA , NOGEN
3,0
*,3
FILEIDK,FILEOPR
FILEIDK,WORKAREA READ 1ST RECORD
MAIN PROCESSING
5,B10SCAN SCAN
FILEIDX, WORKAREA READ RECORD
AlQLOOP
END-QF-FILE
FILEIDK ,FILEOFR TERMINATE
PROCESS VARIABLE RECORD.
6 , IDENTIN ADDR OF INPUT YDENT
7.6 ESTAELISH ADDRESS OF
7 ,RECLEN END OF RECORD
7, =H'9"
PRINT+10(5) ,ACCTIN MOVE ACCOUNT TC PRINT
0(73,6),SCANTAB SCAN FOR DELIMITER
B30 * NO DELIMITER FOUND
4,1 SAVE ADDR OF DELIMITER
1,6 CALC. LENGTH OF FIELD
1,0 DECREMENT LENGTH BY 1
1,M1O0MOVE MOVE VAR LENGTH FIELD
CTLCHEPR ,WSP1
FILEOPR,FPRINT PRINT, SPACE 1
PRINT,BLANKPR CLEAR PRINT AREA
6,1(0,4) INCREMENT FOR NEXT FIELD
6,7 PAST END OF RECORD?
B20 * NO - SCAN NEXT

* ¥ES - END

CTLCHPR,WSP2
FILEOPR,PRINT PRINT 3RD LINE
5 RETURN

PRINT+20(0),0(6)

DECLARATIVES
78X 00"

X'4E"

177X'00"

BLESIZE=300,
DEVICE=3380,
DEVADDR=SYS025,
EOFADDR=A30EQF,
TOAREA1=IOARDKIL,
IOAREAZ=TOARDKIZ,
RECFORM=VARBLX,
TYPEFLE=INPUT,
WORKA=YES

(024

CL300

CL300

GE

MOVE VAR FIELD TO PRINT

TRT TABLE:
* DELIMITER POSITION
* REST OF TABLE

DISK FILE

R RO |

ALIGN ON EVEN BOUNDARY
BUFFER~-1 DISK FILE
BUFFER-2 DISK FILE

INPUT AREA:
* ALIGN EVEN BOUNDARY.

Figure 18-5 Program: printing variable-length records.

Chap. 18 Key Points 479

160 WORKAREA DS 0CcL82 * MAX. RECORD + LENGTH

161 RECLEN DS H * 2-BYTE RECORD LENGTH

162 DC H'O* * 2 BYTES UNUSED IN DOS

163 RCCTIN DS CLOS * ACCOUNT NUMBER

164 IDENTIN DS CL73 * AREA FOR VAR. NAME|ADDR

166 FILEOPR DTFPR BLKSIZE=133, PRINTER FILE +
CTLCHR=YES, +
DEVADDR=SYSLST, +
DEVICE=3203, +
IOAREA1=TIOARPRL, +
IOAREA2=TOARPRZ, +

‘ WORKA=YES

192 ICARPR1 DC CL133* ' BUFFER-1 PRINT FILE

193 IOARRPR2 DC CL133" BUFFER-2 PRINT FILE

195 WSP1 EQU X'09' CTL CHAR: PRINT, SPACE 1

196 WSP2 EQU X'13" * PRINT, SPACE 2

198 BLANKPR DC c

199 PRINT DS 0CL133 PRINT AREA

200 CTLCHFR DS XL1 *

201 DC CL132' * x

202 LTORG

203 =C* SSBOPEN

204 =C* $SBCLOSE!

205 =A(FILEIDR)

206 =A{WORKAREA)

207 . =A(FILEOPR)

208 =A (PRINT)

209 =g'9*

210 END PROGLEC

Figure 18-5 (continued)

The DTFSD omits RECSIZE because IQCS needs to know only the maximum
block length. For OS, the DCB entry for variable blocked format is RECFM = VB.

You could devise some records and trace the logic of this program step by
step.

KEY POINTS

o Entries in a program file definition macro should match the job control com-
mands. ’)

¢ The block size for a file must be a multiple of record size, and all programs
that process the file must specify the same record and block size.

o For variable-length files, the workareas and buffers shounld be aligned on an
even boundary. When creating the file, you calculate and store the record
length, whereas the system calculates the bilock length. Your designated
maximum block size must equal or exceed the size of any record.

480

18-1.

138-2.

18-3.

184.

18-5.

18-6.

18-7.

18-8.

18-9.

18-10.

18-11.

Sequential File Organization Chap. 18

PROBLEMS

For blocked disk or tape records, under what circumstances would it be advisable
to define only one buffer for the file?

Revise the program in Fig. 18-1 or 18-2 for six records per block and the use of
locate mode.

Revise the file definition macro entries and I/O areas in Fig. 18-3 or 184 for the
following. Input records are 90 bytes long and have six records per block. QOutput
records have three records per block, to be loaded on a 3350 disk device as SYS017.
Assemble and test.

Revise the job control for Fig. 18-3 for the following: The filename is DISKOUT,
the file ID is ACCTS.RECEIVAERELE, retention is 30 days, to be run on SYS017,
serial number 123456, using a 3380 on cylinder 15, track 0 for 15 tracks.

Revise the job control for Figure 184 for the following. The filename is DISKOUT,
the file ID is ACCTS.RECEIVABLE, retention is 30 ‘days, to be run on SYS017,
serial number 123456, vsing a 3380 on cylinder 15, track 0 for 15 tracks.

Code the file definition macro for DTFMT. The input file name is TAPFLIN,
record size is fixed-length 500 bytes, the blocking factor is 5, on $Y58030, two buffers,
vse of a workarea, and standard labels. The end-of-file address is X10EOF.

Code the file definition macro for DCB. The input file name is TAPFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, use of a workarea, and standard
labels. The end-of-file address is X10EOF.

Code the file definition macro for DTFSD. The input file name is DSKFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, on SYS030, disk device 3380,
two buffers, and use of a workarea. The end-of-file address is X10EQF.

Code the file definition macro for DCB. The input file name is DSKFLIN, record
size is fixed-length 500 bytes, the blocking factor is 5, disk device 3380, and use of
a workarea. The end-of-file address is X10EQF.

A file contains variable-length records with the following lengths: 326, 414, 502, 384,
293, 504, The maximum block length is 1,200 bytes. Asrange the records in blocks
and show RCWs and BCWs.

Write a program that creates a supplier file on disk from the following input records:

¢1-05 Supplier number

66-25 Supplier name

26-46 Street

47-67 City

€8-74 Amount payable

75-80 Date of last purchase (yymmdd)

Store name, street, and city as variable-length fields, with hex "FF as a delimiter
after each field. Store the amount payable in packed format. .

o

VIRTUAL STORAGE

ACCESS METHOD
(VSAM)

OBJECTIVE

To explain the design of the virtual storage access
method and its processing requirements.

Virtual storage access method (VSAM) is a relatively recent file organization method
for users of IBM OS/VS and DOS/VS. VSAM facilitates both sequential and
random processing and supplies a number of usefudl utility programs.

The term file is somewhat ambiguous since it may reference an /O device or
the records that the device processes. To distinguish a collection of records, IBM
OS literature uses the term data set.

VSAM provides three types of data sets:

1. Key-sequenced Data Set (KSDS). KSDS maintains records in sequence of
key, such as employee or part number, and is equivalent to indexed sequential
access method.

2. Entry-sequenced Data Set (ESDS). ESDS maintains records in the sequence
in which they were iitially entered and is equivalent to sequential organi-
zation.

481

Feature

Key-Sequenced

Entry-Sequenced

Relative-Record

Record sequence

Record length
Accenan of

records

Change of address

New records

Recovery of space

By key

Fixed or
variable

By key via index or
RBA

Can change record
RBA

Distributed free
space for records

Reclaims space if
record ls deleted

In sequence in
which entered

Flxed oF
variable
By RBA

Cannot change
record RBA

Space at end of-
dais set

NHo delete but
can overwrite
an old record

In sequence of
relative record
number

Fixed only

By relative record
number

Cannot change
relative record
number

Empty slots in
data set

Can reuse deleted
space

Figure 19-1 Features of VSAM organization methods.

.\\L-/‘.

Access Method Services (AMS) 483

3. Relative-Record Data Set (RRDS). RRDS maintains records in order of
relative record number and is equivalent to direct file organization.

Both OS/VS and DOS/VS handle VSAM the same way and use similar support
programs and macros, although OS has a number of extended features.

Thorough coverage of assembler VSAM would require an entire textbook.
However, this chapter supplies enough information to enable you to code programs
that create, retrieve, and update a VSAM data set. For complete details, see the
IBM Access Methods Services manual and the IBM DOS/VSE Macros or OS/VS
Supervisor Services manuals. '

CONTROL INTERVALS

For all three types of data sets, VSAM stores records in groups (one or more) of
control intervals. You may select the control interval size, but if you allow VSAM
to do so, it optimizes the size based on the record length and the type, of disk
device being used. The maximum size of a control interval is 32,768 bytes.

At the end of each control interval is control information that describes the
data records:

I&ec—lLRec—iZIRec—ﬂ .. jControl Informatiogl

A control interval contains one or more data records, and a specified rumber
of control intervals comprise a control area. VSAM addresses a data record by
relative byte address (RBA)—its displacement from the start of the data set.
Consequently, the first record of a data set is at RBA 0, and if records are 500
bytes long, the second record is at RBA 500. '

The Jist in Fig. 19-1 compares the three types of VSAM organizations.

ACCESS METHOD SERVICES (AMS)

Before physically writing (or “loading”) records in a VSAM data set, you first
catalog its structure. The IBM utility package, Access Method Services (AMS),
enables you to furnish VSAM with such details about the data set as its name,
organization type, record length, key location, and password (if any). Since VSAM
subsequently knows the physical characteristics of the data set, your program need
not supply as much detailed information as would a program accessing an ISAM
file.

The following describes the more important features of AMS. Full details

484 Virtual Storage Access Method (VSAM) Chap. 19

are in the IBM OS/VS and DOS/VS Access Methods Services manual. You catalog
a VSAM structure using an AMS program named IDCAMS, as follows:

OS: //STEP EXEC PGM=IDCAMS
DOS: // EXEC IDCAMS,SIZE=AUTD

Immediately following the command are various entries that DEFINE the
data set. The first group under CLUSTER provides required and optional entries
that describe all the information that VSAM must maintain for the data set. The
second group, DATA, creates an entry in the catalog for a data component, that
is, the set of all control area and intervals for the storage of records. The third
group, INDEX,, creates an entry in the catalog for a KSDS index component for
the handling of the KSDS indexes.

Figure 19-2 provides the most common DEFINE CLUSTER eatries. Note
that to indicate continuation, a hyphen (-) follows every entry except the last.

Cluster level

DEF INE CLUSTER
(NAME(data-set-name) -
{CYLINDERSCprimary[secondaryl)|

BLOCKS(primary[secondaryl)| (choose
RECBRDSC primaryl secondaryl)| one)
TRACKS(primaryl secondaryl)}} -

[INDEXED | NODNINDEXED | NUMBERED] - (choose one)

[KEYS(length offset)] -
(RECORDSIZE(average maximum}] -
[VOLUMES {vol-ser[vol~ser ...1}]

Data component level

[DATA

CICONTROLINTERVALSIZE(size)] -
[NAMEC(data-named] -
[IVOLUMES(vol-ser[veol-ser ...121]
)1

Index component leve!

[INDEX

C[NAMECindex-namel)] -
(VOLUMES(vol-ser[vol-ser ...1)1]
21

Figure 19-2 Entries for defining 2 VSAM data set.

KN g
e

Access Method Services (AMS) 485

Note: SYMBOL MEANING
[Optional entry, may be omitted
i} Select one of the following opticns
®) You must code these parentheses
I “OI”

Figure 19-2 (continued)

DEFINE CLUSTER (abbreviated DEF CL) provides various parameters all

. contained within parentheses.

NAME is a required parameter that supplies the name of the data set. You
can code the name up to 44 characters with a period after each 8 or fewer
characters, as EMPLOYEE.RECORDS.P030. The name corresponds to
job control, as follows: '

0OS: //FILEVS DD DSNAME=EMPLOYEE .RECORDS.PO30 ...
DOS: // BLBL FILEVS,“EMPLOYEE.RECODRDS.P030”,0,VSAM

The name FILEVS in this example is whatever name you assign'to the file
definition (ACB) in your program, such as

filename ACB DDNAME=FILEVS ...

BLOCKS. You may want to load the data set on an FBA device (such as
3310 or 3370) or on a CKD device (such as 3350 or 3380). For FBA devices,
allocate the number of 512-byte BLOCKS for the dataset. For CKD devices,
the entry CYLINDERS (or CYL) or TRACKS allocates space. The entry
RECORDS allocates space for either FBA or CKD. In all cases, indicate
a primary allocation for a generous expected amount of space and an optional
secondary allocation for expansion if required.

Choose one entry to designate the type of data set: INDEXED designates
key-sequenced, NONINDEXED is entry-sequenced, and NUMBERED is
relative-record.

KEYS for INDEXED only defines the length (from 1 to 255) and position
of the key in each record. For example, KEYS (6 0) indicates that the key
is 6 bytes long beginning in position 0 {the first byte).

RECORDSIZE (or RECSZ) provides the average and maximum lengths in
bytes of data records. Forfixed-length records and for RRDS, the two entries
are identical. For example, code (120b120) for 120-byte records.
VOLUMES (or VOL) identifies the volume serial number(s) of the DASD
volume(s) where the data set is to reside. You may specify VOLUMES at

486 Virtual Storage Access Method (VSAM) Chap. 19

any of the three levels; for example, the DATA and INDEX components

may reside on different volumes.

DEFINE CLUSTER supplies a number of additional specialized options
described in the IBM AMS manual.

ACCESSING AND PROCESSING

VSAM furnishes two types of accessing, keyed and addressed, and three types of
processing, sequential, direct, and skip sequential. The following chart shows the
legal accessing and processing by type of organization:

Type. Keyed Access Addressed Access
KSDS Sequential Sequential
Direct Direct

Skip sequential

ESDS Sequential
Direct

RRDS Seguential
Direct
Skip sequential

In simple terms, keyed accessing is concerned with the key (for KSDS) and
relative record number (for RRDS). For example, if you read a KSDS sequen-
tially, VSAM delivers the records in sequence by key (although they may be in a
different sequence physically).

Addressed accessing is concerned with the RBA. For example, you can access
a record in an ESDS using the RBA by which it was stored. For either type of
accessing method, you can process records sequentially or directly (and by skip
sequential for keyed access). Thus you always use addressed accessing for ESDS
and keyed accessing for RRDS and may process either type sequentially or directly.
KESDS, by contrast, permits both keyed access (the normal) and addressed access,
with both sequential and direct processing.

KEY-SEQUENCED DATA SETS

A key-sequenced data set (KSDS) is considerably more complex than either ESDS
or RRDS but is more useful and versatile. You always create (“load”) a KSDS
in ascending sequence by key and may process a KSDS directly by key or sequen-
tiaily. Since KSDS stores and retrieves records according to key, each key in the
data set must be unique.

. S

\\\—//'

Key-Sequenced Data Sets 487

; | |
Index set: 40 I ptr j 82 : ptr | 92 } ptr
m’/@ce set \ Sequence set
1 I
22=ptr 32=ptr 402ptr 55iptr esiptr 82iptr 92iptr i E
[]
06 25 35 42 63 75 85
Data | 09 26 37 45 65 77 87
set
18 30 38 55 | |FREE 80 92 FREE| {FREE
22 32 40 FREE| |FREE 82 FREE
7, Y /) L/ [/ // 7
o v w4 v vs W
T
Control area Controi area Control area

Figure 19-3 Key-sequenced organization.

Figure 19-3 provides a simplified view of a key-sequenced data set. The
control intervals that contain the data records are depicted vertically, and for this
example three control intervals comprise a control area. A sequence set contains
an entry for each control interval in a control area. Entries within a sequence set
consist of the highest key for each control interval and the address of the control
interval; the address acts as a pointer to the beginning of the control interval. The
highest keys for the first control area are 22, 32, and 40, respectively. VSAM
stores each high key along with an address pointer in the sequence set for the first
control area.

At a higher level, an index set (various levels depending on the size of the
data set) contains high keys and address pointers for the sequence sets. In Fig.
19-3, the highest key for the first control area is 40. VSAM stores this value in
the index set along with an address pointer for the first sequence.

When a program wants to access a record in the data set directly, VSAM
locates the record first by means of the index set and then the sequence set. For
example, a program requests access to a record with key 63. VSAM first checks
the index set as follows:

RECORD KEY INDEX SET .
63 40 Record key high, not in first control area.
63 82 Record key low, in second control area.

VSAM has determined that key 63 is in the second control area. It next examines

488 Virtual Storage Access Method (VSAM) Chap. 19

the sequence set for the second control area to locate the correct control interval.
These are the steps:

RECORD KEY SEQUENCE SET

63 55 Record key high, not in first control
interval.

63 65 Record key low, in second control
interval.

VSAM has now determined that key 63 is in the second control interval of the
second control area. The address pointer in the sequence set directs VSAM to
the correct control interval. VSAM then reads the keys of the data set and locates
'key 63 as the first record that it delivers to the program.

Free Space

You normally allow a certain amount of free space in a data set for VSAM to
insert new records. When creating a key-sequenced data set, you can tell VSAM
to allocate free space in two ways:

L. Leave space at the end of each control interval.
2. Leave some control intervals vacant,

If a program deletes or shortens a record, VSAM reclaims the space by shifting
to the left all following records in the control interval. If the program adds or
lengthens a record, VSAM inserts the record in its correct space and moves to the
right all following records in the control interval. VSAM updates RBAs and
indexes accordingly. .

A control interval may not contain enough space for an inserted record. In
such a case, VSAM causes a control interval split by removing about half the records
to a vacant control interval in the same control area. Although records are now
no longer physically in key order, for VSAM they are logically in sequence. The
updated sequence set controls the order for subsequent retrieval of records.

if there is no vacant control interval in a control area, VSAM causes a control
area split, using free space outside the control area. Under normal conditions,
such a split seldom occurs. To a large degree, a VSAM data set is self-organizing
and requires reorganization less often than an ISAM file.

ENTRY-SEQUENCED DATA SETS

An entry-sequenced data set (ESDS) acts like sequential file organization but has
the advantages of being under control of VSAM, some use of direct processing,
and password facilities. Basically, the data set is in the sequence in which it is

VSAM Macro lnstructions 489

created, and you normally (but not necessarily) process from the start to the end
of the data set. Sequential processing of an ESDS by RBA is known as addressed
access, which is the method you use to create the data set. You may also process
ESDS records directly by RBA. Since ESDS is not concerned with keys, the data
set may legally contain duplicate records.

Assume an ESDS containing records with keys 001, 003, 004, and 006. The
data set would appear as follows:

| 001 | 003 | 004 | 006 |

You may want to use ESDS for tables that are to load into programs, for
small files that are always in ascending sequence, and for files extracted from a
KSDS that are to be sorted.

RELATIVE-RECORD DATA SETS

A relative-record data set (RRDS) acts like direct file organization but also has
the advantages of being under control of VSAM and offering keyed access and
password facilities. Basically, records in the data set are located according to their
keys. For example, a record with key 001 is in the first location, a record with
key 003 is in the third location, and so forth. If there is no record with key 002,
that location is empty, and you can subsequently insert the record.

Assume an RRDS containing records with keys 001, 003, 004, and 006. The
data set would appear as follows:

| 001 | .. | 003 | 004 | ... | 006 |

Since RRDS stores and retrieves records according to key, each key in the
data set must be uaique.

You may want to use RRDS where you have a small to medium-sized file
and keys are reasonably consecutive so that there are not large numbers of spaces.
One example would be a data set with keys that are regions or states, and contents
are product sales or population and demographic data.

You could also store keys after performing a computation on them. Asa
simple example, imagine a data set with keys 101, 103, 104, and 106. Rather than
store them with those keys, you could subtract 100 from the key value and store
the records with keys 001, 003, 004, and 006.

VSAM MACRO INSTRUCTIONS

VSAM uses a number of familiar macros as well as a few new ones to enable you
to retrieve, add, change, and delete records. In the following list, for macros
marked with an asterisk (*), see the IBM DOS/VS or OS/VS Supervisor and I/O
Macros manual for details.

490 Virtual Storage Access Method (VSAM} Chap. 19
e To relate a program and the data:
ACB (access method control block)
EXLST (exit list)
e To connect and disconnect a program and a data set:
OPEN {open a data set)
CLOSE (close a data set)

TCLOSE=* (temporary close)

e To define requests for accessing data:

RPL (request parameter list)
s To request access to a file:
GET (get a record)
PUT (write or rewrite a record)
POINT=* (position VSAM at a record)
ERASE (erase a record previously retrieved with a GET)

ENDREQ+* (end request) :

¢ To manipulate the information that relates a program to the data:

GENCB* (generate control block)
MODCB* (modify control block)
SHOWCB (show control block)
TESTCB+ (test control block)

A program that accesses a VSAM data set requires the usual OPEN to connect
the data set and CLOSE to disconnect it, the GET macro to read records, and
PUT 1o write or rewrite records. An important difference in the use of macros
under VSAM is the RPL (request for parameter list) macro. As shown in the
following relationship, a GET or PUT specifies an RPL macro name rather than
a file name. The RPL in turn specifies an ACB (access control block) macro,
which in its turn relates to the job control entry for the data set:

Imperative macro:
GET RPL = RPLname

Define request:
RPLname RPL ACB=VSAMname...

Define Access Control Block:
VYSAMname ACB DDNAME =filename. ..

Job control:
Jffilename DD DSNAME = EMPLOYEE . RECORDS . P030 ...,

S

The ACB Macro: Access Method Control Block 491

The ACB macro is equivalent to the OS DCB or DOS DTF file definition
macros. As well, the OPEN macro supplies information about the type of file
organization, record length, and key. Each execution of OPEN, CLOSE, GET,
PUT, and ERASE causes VSAM to check its validity and to insert a code into
register 15 that you can check. A return code of X'00" means that the operation
was successful. You can use the SHOWCE macro to determine the exact cause
of the error.

THE ACB MACRO: ACCESS METHOD CONTROL BLOCK

The ACB macro identifies a data set that is to be processed. Its main purpose is
to indicate the proposed type of processing (sequential or direct) and the use of
exit routines, if any. The DEFINE CLUSTER command of AMS has already
stored much of the information about the data set in the VSAM catalog. When
a program opens the data set via the ACB, VSAM delivers this information to
virtual storage.

Entries for an ACB macro may be in any sequence, and you may code only
those that you need. Following is the general format, which you code like a DCB
or DTF, with 2 comma following each entry and a continuation character in column
72. All operands -are optional.

name ACB AM=VSAM,

DDNAME=Filename,

EXL.ST=address,

MACRF=CLADRIT ,KEY]
[,PIRI[,SEQII ,SKP]
{,INIL,DUT]
[,NRM[AIX1), *

STRND=number

name The name indicates the symbolic address for the ACB when
assembled. Ifyou omit the DDNAME operand from the ACB
definition, this name should match the filename in your DLBL
or DD job statement.

AM=VSAM Code this parameter if your installation aiso uses VIAM;
otherwise, the assembler assumes VSAM.

DDNAME This entry provides the name of your data set that the program
is to process. This name matches the filename in your DLBL
or DD job statement.

EXLST The address references a list of your addresses of routines that
provide exits. Use the EXLST macro to generate the list, and
enter its pame as the address. A common use is to code an

492 Virtual Storage Access Method (VSAM) Chap. 19

entry for an end-of-file exit for sequential reading. If you
have no exit routines, omit the operand.

MACRF The options define the type of processing that you plan. In
the following, an underlined entry is a default:

ADR | KEY Use ADR for addressed access (KS and
ES) and KEY for keyed access (KS and
RR).

DIR | SEQ] SKP DIR provides direct processing, SEQ

provides sequential processing, and SKP
means skip sequential (for KS and RR).
, INjOuUT IN retrieves records and OUT permits re-
mieval, insertion, add-to-end, or update
for keyed access and retrieval, update, or
add-to-end for addressed access.

NRM | ALX The DDNAME operand supplies the name
of the data set (or path). NRM means
normal processing of the data set, whereas
ATX means that this is an alternate index.

Other MACRF options are RST | NRS for resetting catalog
information and NUB | UBF for user buffers.

STRND The entry supplies the total number of RPLs (request param-
eter lists) that your program will use at the same time (the
default is 1).

ACB also has provision for parameters that define the number and size of
buffers; however, the macro has standard defaults.

In the program example in Fig. 19-4, the ACB macro VSMFILOT has only
two entries and aliows the rest to default. Access is keyed (KEY), processing is
sequential (SEQ), and the file is output (OUT). There is no exit list, STRNO
defaults to 1, and MACRF defaults to NRM (normal path).

The assembler does not generate an I/O module for an ACB, nor does the
linkage editor include one. Instead, the sysiem dynamically generates the module
at execute time.

THE RPL MACRO: REQUEST PARAMETER LIST

The request macros GET, PUT, ERASE, and POINT require a reference to an
RPL macro. For example, the program in Fig. 194 issues the following GET
macro:

GET RPL=RPLISTIN

The OPEN Macro

493

The operand supplies the name of the RPL macro that contains the information
needed to access a record. f your program is 1o access a data set in different
ways, you can code an RPL macro for each type of access; each RPL keeps track
of its location in the data set.

The standard format for RPL is as follows. The name for the RPL macro
is the one that you code in the GET or PUT operand. Every entry is optional.

RPLname RPL AM=VSAM,

ACB=address,
AREA=address,
AREALEN=1length,
ARG=address,
KEYLEN=length,
OPTCD=Copticns),
RECLEN=length

+ + + 4+ + + +

AN

ACB

AREA

AREALEN
ARG

KEYLEN

QPTCD

RECLEN

THE OPEN MACRO

The entry VSAM specifies that this is a VSAM (not VTAM)
control block.

The entry gives the name of the associated ACB that defines
the data set.

The address references an I/O workarea in which a record is
available for output or is to be entered on input.

The entry supplies the length of the record area.

The address supplies the search argument—a key, including
a relative record number or an RBA.

The length is that of the key if processing by generickey. (For
normal keyed access, the catalog supplies the key length.)
Processing options are SEQ, SKP, and DIR; request options
are UPD (update) and NUP (mo update). For exampie, a
direct update would be (DIR,UPD).

For writing a record, your program supplies the length to VSAM,
and for retrieval, VSAM supplies the length to your program.
If records are variable length, you can use the SHOWCB and
TESTCB macros to examine the field (see the IBM Supervisor
manual).

The OPEN macro ensures that your program has authority to access the specified
data set and generates VSAM control blocks.

[label]l] OPEN addressl ,address ... 1

494 Virtual Storage Access Method (VSAM) Chap. 19

The operand designates the address of one or more ACBs, which you may
code either as a macro name or as a register notation (registers 2—12); for example:

OPEN VSFILE
or LA 6,VSFILE
OPEN (&)

You can code up to 16 filenames in one OPEN and can include both ACB
names and DCB or DTF names. Note, however, that to facilitate debugging,
avoid mixing them in the same OPEN. OPEN sets a return code in register 15
to indicate success (zero) or failure (nonzero), which your program can test:

X‘o0” “Opened all ACBs successfully.

X’04° Opened all ACBs successfully but issued a warning message for
One OI HOTE.
X 08’ Failed to open one or more ACBs.

On a failed OPEN or CLOSE, you can also check the diagnostics following
program execution for a message such as OPEN ERROR X’6E’, and check Ap-
pendix K of the IBM Supervisor manual for an explanation of the code.

THE CLOSE MACRO

The CLOSE macro completes any I/O operations that are still outstanding, writes
any remaining output buifers, and updates catalog entries for the data set.

[label] CLOSE addressI ,address ... 1

You can code up to 16 names in one CLOSE and can include both ACB.
names and DCB or DTF names. CLOSE sets a return code in register 15 to
indicate success or failure, which your program can test:

X400 Closed all ACBs successfully.
X7 04” Failed to close one or more ACBs successfully.
X 08~ Insufficient virtual storage space for close routine or could not

locate modules. .

THE REQUEST MACROS: GET, PUT, ERASE

The VSAM request macros are GET, PUT, ERASE, POINT, and ENDREQ.
For each of these, VSAM sets register 15 with a return code to indicate success or
failure of the operation, as follows:

T

The Request Macros: GET, PUT, ERASE 495

X<00° Successful operation.
X‘o04’ Request not accepted because of an active request from another
task on the same RPL. End-of-file also causes this return code.
X“08” A logical error; examine the specific error code in the RPL.
X‘0C* Uncorrectible KO error; examine the specific error code in the
RPL.
The GET Macro

GET retrieves a record from a data set. The operand specifies the address of an
RPL that defines the data set being processed. The entry may either (1) cite the
address by name or (2} use register notation, any register 2—12, in parentheses.

You may use register 1; its use is more efficient, but GET does not preserve its
address.

1. GET RPL=RPLname

2. LA reg,RPLname
GET RPL={reg)

The RPL macro provides the address of your workarea where GET is to

deliver an input record. Register 13 must contain the address of a savearea defined
as 18 fullwords.

Under sequential input, GET delivers the next record in the data set. The
OPTCD entry in the RPL macro would appear, for example, as
OPTCD =(KEY,SEQ) or OPTCD =(ADR,SEQ). You have to provide for end-
of-file by means of an EXLST operand in the associated ACB macro; see Fig. 19-
4 for an example.

For nonsequential accessing, GET delivers the record that the key or relative
record number specifies in the search argument field. The OPTCD entry in the
RPL macro would appear, for example, as OPTCD =(KEY,SKP) or
OPTCD=(KEY,DIR), or as an RBA in the search argument field, as
OPTCD = (ADR,DIR).

You aiso use GET to uvpdate or delete a record.

The PUT Macro

PUT writes or rewrites a record in a data set. The operand of PUT specifies the
address of an RPL that defines the data set being processed. The entry may either
(1) cite the address by name or (2) use register notation, any register 2-12, in

parentheses. You may use register 1; its use is more efficient, but PUT does not
preserve its address.

1. PUT RPL=RPLname
2. LA reg,RPLname
PUT RPL=Creg)

496 * Virtual Storage Access Method (VSAM) Chap. 19

The RPL macro provides the address of your workarea containing the record
that PUT is to add or update in the data set. Register 13 must contain the address
of a savearea defined as 18 fullwords.

. To create (load) or extend a data set, use sequential output. The OPTCD
entry in the RPL macro would appear, for example, as OPTCD =(SEQ or SKP).
SKP means “skip sequential” and enables you to start writing at any specific record.

For writing a KSDS or RRDS, if OPTCD contains any of the following, PUT
stores a new record in key sequence or relative record sequence:

OPTCD=(KEY,SKP,NUP) Skip, no update
DPTCD=(KEY,DIR ,NUF) Direct, no update
OPTCD=(KEY,SEQ,NUP) Sequential, no update

Note that VSAM does not allow you to change a key in a KSDS (delete the
record and write 2 new one). To change a record, first GET it using OPTCD =UPD,
change its contents (but not the key), and PUT it, also using OPTCD=UPD. To
write a record in ESDS, use OPTCD=(ADR, . . .).

The ERASE Macro

The purpose of the ERASE macro is to delete a record from a KSDS or an RRDS.
To locate an unwanted record, you must previously issue a GET with an RPL
specifying OPTCD=(UPD. . .).

[labell ERASE RPL=address or =(register)

For ESDS, a common practice is to define a delete byte in the record. To
“delete™ a record, insert a special character such as X°FF’; all programs that process
the data set should bypass all records containing the delete byte. You can occa-
sionally rewrite the data set, dropping all deletes.

THE EXLST MACRO

If your ACB macro indicates an EXLST operand, code a related EXLST macro.
EXLST provides an optional list of addresses for user exit routines that handle
end-of-file and error analysis. All operands in the macro are optional.

[labell EXLST AM=VSAM, +
EODAD=address,
LERAD=address,
SYNAD=address

When VSAM detects the coded condition, the program enters your exit

The SHOWCB Macro 497

routine. Register 13 must contain the address of your register savearea. For
example, if you are reading sequentially, supply an end-of-data address (EODAD)
in the EXTST macro—see the ACB for VSMFILIN in Fig. 19-4.

Here are explanations of the operands for EXT.ST:

VSAM Indicates a VSAM control block.

EODAD Supplies the address of your end-of-data routine. You may also
read sequentially backward, and VSAM enters your routine when
reading past the first record. The request return code for this
condition is X04’.

LERAD Indicates the address of the routine that analyzes logical ermors
that occurred during GET, PUT, POINT, and ERASE. The
request return code for this condition is X’08".

SYNAD Provides the address of your routine that analyzes physical I/O
errors on GET, PUT, POINT, ERASE, and CLOSE. The re-
quest return code for this condition is X'0C".

Other operands are EXCPAD and JRNAD.

THE SHOWCB MACRO

The original program in Fig. 194 contained an error that caused it to fail on a
PUT operation. The use of the SHOWCB macro in the error routine for PUT
(R30PUT) helped determine the actual cause of the error.

The purpose of SHOWCEB is to display fields in an ACB, EXLST, or RPL.
Code SHOWCB following a VSAM macro where you want to identify errors that
VSAM has detected. The SHOWCSB in the PUT errvor routine in Fig. 19-4 is as

follows:
SHOWCB RPL=RPLISTOT,AREA=FDBKKD,F IE-LDS= C(FDBKJ>,LENGTH=4
FDBKKWD D(-J- Fro-
AREA Designates the name of a fullword where VSAM is to place an

error code.
FIELDS Tells SHOWCB the type of display; the keyword FDBX (feed-
back) causes a display of error codes for request macros.
LENGTH Provides the length of the area in bytes.

On a failed request, VSAM stores the error code in the rightmost byte of the
fullword area. These are some common error codes:

08 Attempt to store a record with a duplicate key.
0c Out-of-sequence or duplicate record for KSDS or RRDS.

498 Virtual Storage Access Method (VSAM) Chap. 19

10 No record located on retrieval.
1¢ No space available to store a record.

Your program can test for the type of error and display a message. For
nonfatal errors, it could continue processing; for fatal errors, it could terminate.

The original error in Fig. 19-4 was caused by the fact that the RPL macro
RPLISTOT did not contain an entry for RECLEN; the program terminated on
the first PUT error, with register 15 containing X’08’ (a “logical exror™). Insertion
of the SHOWCB macro in the next run revealed the cause of the error in FDBKWD:
00006C. Appendix K of the IBM Supervisor manual explains the error (in part)
as follows: “The RECLEN value specified in the RPL macro was [either] larger
than the allowed maximum {or] equal to zero. . . .” Coding a RECLEN operand
in the RPL macro solved the problem, and the program then executéd through to
normal termination. One added point: Technically, after each SHOWCB, you
should test register 15 for a successful or failed operation.

SAMPLE PROGRAM: LOADING A KEY-SEQUENCED DATA SET

The program in Fig. 19-4 reads records from the system reader and sequentially
creates a key-sequenced data set. A DEFINE CLUSTER command has allocated
space for this data set as INDEXED (KSDS), with three tracks, a 4-byte key
starting in position 0, and an 80-byte record size. The program loads the entire
data set and closes it on completion. For illustrative (but not practical) purposes,
it reopens the data set and reads and prints each record.

The PUT macro that writes records into the data set is:

PUT RPL=RPLISTOT

RPLISTOT defines the name of the ACB macro (VSMFILOT), the address of the
output record, and its length. Although the example simply duplicates the records |
into the data set, in practice you would probably define various fields and store
numeric values as packed or binary. i

The ACB macro defines VSMFILOT for keyed accessing, sequential pro-
cessing, and output. The DDNAME, VSAMFIL, in this example relates to the
name for the data set in the DLBL job control entry (DD under OS).

For reading the data set, the GET macro is

GET RPL=RPLISTIN

RPLISTIN defines the name of the ACB macro (VSMFILIN), the address in which
GET is to read an input record, and the record length.

The ACB macro defines VSMFILIN for keyed access, sequential processing,
and input. The DDNAME, VSAMFIL, relates to the name for the data set in

Sample Program: Loading a Key-Sequenced Data Set

IDCAMS SYSTEM SERVICES

DELETE (VSAMFIL.ABEL) CLUSTER PURGE
IDCOS50I ENTRY (C) VSAMFIL.ABEL DELETED
IDCOS50I ENTRY (D) VSAMFIL.DAT2A DELETED
IDCOSS0I ENTRY (I) VSAMFIL.INDEX DELETED
IDCOO01I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS O

DEFINE CLUSTER (NAME(VSAMFIL.ABEL) -
TRACKS(3) - :
VOLUME({SVSEO3) -
INDEXED -
KEYS(4 0) -
RECORDSIZE(80 80))
DATA (NAME(VSAMFIL.DATA))
INDEX (NAME(VSAMFIL.INDEX)

~—]

IDCOOOLI FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS O
IDCO002I IDCAMS PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS O
// OPTION LINK,PARTDUMP,NOXREF,LOG

ACTION NOMAP
// EXEC ASSEMBLY,SIZE=256K

PRINT NOGEN,NODATA

3

4 * MAIN PROCESSING

5 %

6 PROGVEM START

7 BALR 12,0 INITIALIZE

8 USING #*,12 BASE REC &

9 La 13,VSAMSAVE VSAM SAVEARER
10- OPEN FILEIN,VSMFILOT

18 LTR 15,15 SUCCESSFUL OPEN?
20 BNZ R10O0PEN NO - TERMINATE
21 GET FILEIN,VSMREC READ 1ST RECORD
28 A10LOCP BAL 6,B1OLOAD CREATE FILE

29 GET FILEIN,VSMREC READ NEXT

35 B A1O0LOOP

37 ABOEQF CLOSE FILEIN,VSMFILOT

45 LA 13,VSAMSAVE

47 OPEN FILEPRT,VSMFILIN

56 LTR 15,15 SUCCESSFUL OPEN?
87 BNZ R10QPEN NO -- TERMINATE
58 BAL 6,C10PRINT . READ & PRINT VSiM FILE
60 ASGEOF CLOSE FILEPFRT,VSMEFILOT

69 BEOJ NORMAL TERMINATION
73 * LOAD VSAM FILE

74 *

75 BlOLOAD PUT RPL=RPLISTOT WRITE VSaM RECORD
82 LTR 15,15 SUCCESSFUL WRITE?
83 BNZ R30PUT NO =--ERROR

84 BR 6 . RETURN

86 * READ & PRINT VSAM FILE
87 * —_—
88 ClOPRINT GET RPL=RPLISTIN o
95 LTR 15,15 SUCCESSFUL READ?
26 BNZ R40GET RO - TERMINATE

Figure 194 Loading a key-sequenced data set.

500

87
98
104

106
107
108
109
110
111
112
164
173
174
175
176
228

237
238
244

248
249
250
252
278
308

341

371

404
416

446
447
448
449
450
451
452

454
455
456
457
458
459
460
461

MVC
PUT

*
*x

R100PEN MVI
B

R30PUT MVI

ST

Virtual Storage Access Method (VSAM)

PRREC ,VEMREC
FILEPRT ,FRINT
C1lOPRINT

Chap. 19

PRINT RECORD

ERROR ROUTINES

ERRCDE,C'Q'
RS0ODUMP
ERRCDE,C*'P’
15,SAVELS

OPEN ERROR
PUT ERROR

SHOWCB RPL=RPLISTOT,AREA=FDBKWD,FIELDS=(FDBK) , LENGTH=4

CLOSE FILEIN,VSMFILOT:

R90DUMP
ERRCDE,C'G’
15,SAVEL1S

GET ERROR

SHOWCE RPL=RPLISTIN,AREA-FDBKWD,FIELDS=(FDBK) ,LENGTH=4

CLOSE FILEPRT,VSMFILCT
PDUMP ERRCDE,PRINT+133

B
R40GET MVI
ST
R9ODUMP EQU
ECJT
*x
%
*
FILEIN DEFIN
FILEPRT DEFFR
VSMFILOT ACB
RPLISTOT RPL
VSMFILIN ACB
EQOFDCB EXLST
RPLISTIN RPL
VSAMSAVE DS
ERRCDE DC
SAVELIS DS
FDBEKWD DC
VEMREC DS
RECKEY DS
DS
PRINT Ds -
e
PRREC DC
DC
LTORG

*

ABNORMAL TERMINATION

DECLARATIVES

ASQEQF
DDNAME=VSAMFIL.,

MACRF=(KEY,SEQ,CUT}

ACB=VSMFILOT,
AREA=VSMREC,
AREALEN=80,
RECLEN=80,

DEFINE INPUT FILE
DEFINE PRINTER FILE
DEFINE VSaM O/F FILE

+

RPL FOR VSMFILOT

+ 4+ 4

OPTCD=(KEY,SEQ,NUP}

DDNAME=VSAMFIL,

MACRF=(KEY,SEQ,IN),

EXLST=EOFDCB

EQODAD=A90EOF
ACB=VEMFILIN,
AREA=VSMREC,
ARERLEN=80,

DEFINE VSAM I/P FILE

+ +

EOF, EXIT FOR VSAM I/P
RPL FOR VSMFILIN

4+ +

OPTCD=(KEY,SEQ,NUP)

18F
X*00"
F
o’
0CL80
CL04
CL76

OCL133
X'09"

cLseo*
CL52" *

=C*SSBOPEN *

=C*S$SBCLOSE"
=CLB " IKQVTMS '

Figere 19-4

VSAM SAVEAREAR
ERROR CODE

INPUT/OUTPUT RECORD
*

*

FRINT RECORD
*

*
*

(continued)

__‘_/,'

Keyed Direct Retrieval 501
462 =CL8 ' SSBPDUMP*

463 =A({ERRCDE,PRINT+133)

464 =A{FILEIN)

465 =A(VSMREC)

466 =A(RPLISTOT)

467 =A({RPLISTIN)

468 =A(FILEFRT)

459 =A (PRINT)

470 END PROGVSM

// EXEC LNKEDT,SIZE=128K

// DLBL VSAMFIL,'VSAMFIL.ABEL',,VSAM
// EXTENT SYS008,SVSE03

// ASSGN SYS008,X'303"

// EXEC ,SIZE=128K

Qutput:-
O034AES PROCESSORS (Cutput from
0047MICROTEL INDUSTRIES printing contents
0065ACE ELECTRONICS of loaded data set)

Figure 19-4 (continued)

the DLBL job control entry. Note that there is an ACB and RPL macro for both
mput and output, but both ACB macros specify the same DDNAME: VSAMFIL.

Error routines are for fatlures on QPEN, GET, and PUT. These rather
primitive routines supply an error code and the contents of the declaratives; in
practice, you may want to enlarge these routines. If you fail to provide error
routines, your program may crash with no clear cause.

During testing, you may have changed the contents of a VSAM data set and
now want to reload (re-create) the original data set. Except for updating with
new keys, VSAM does not permit overwriting records in a data set. You have to
use IDCAMS to DELETE and again DEFINE the data set as follows:

DELETE(data-set-name) CLUSTER PURGE ...
DEFINE CLUSTER(HNAME(data-set-name) -

Loading an ESDS

To convert the program in Fig. 19-4 from KSDS to ESDS, change DEFINE CLUS-
TER from INDEXED to NONINDEXED and delete the KEYS and INDEX
entries. Change the ACB MACRF from KEY to ADR, and change the RPL
OPTCD from KEY to ADR—that’s all.

KEYED DIRECT RETRIEVAL

Key-sequenced data sets provide for both sequential and direct processing by key.
For direct processing, you must supply VSAM with the key of the record to be
accessed. If you use a key to access a record directly, it must be the same length

502 Virtual Storage Access Method (VSAM) Chap. 19

as the keys in the data set (as indicated in the KEYS operand of DEFINE CLUS-
TER), and the key must actually exist in the dataset. For example, if you request
a record with key 0028 and there is no such record, VSAM returns an error code
in register 15.

Using the data set in Fig. 194, assume that a program is to access records
directly. A user enfers record key numbers via a terminal, and the program is to
display the record on the screen. In this partial example, the RPL macro specifies
the name (ARG) of the key to be in a 4-byte field named KEYFLD. These are
the specific coding requirements for the ACB, RPL, and GET macros:

VSMFILE ACB DDNAME=name, . +
MACRF=CKEY ,DIR, IN)

RPLIST RPL ACB=VSMFILE,
AREA=DCBREC,
AREALEN=80,
ARG=KEYFLD,
OPTCD=(KEY,DIR,NUP)

KEYFLD DS CL4

DCBREC DS CL80

+ + + +

[Accept a key number from the terminall
MVC KEYFLD,keyno

GET RPL=RPLIST

LTR 15,15

BNZ error

[Display the record on the screenl

For updating a KSDS record, change the MACREF from IN to OUT, and
change the OPTCD from NUP to UPD. GET the record, make the required
changes to it (but not the key!), and PUT the record using the same RPL.

SORTING VSAM FILES

You can sort VSAM records into either ascending or descending sequence. You
must first use DEFINE CLUSTER to allocate a vacant data set (NONINDEXED)
for SORT to write the sorted data set. Here is a typical SORT specification:

// EXEC SDRT,SIZE=256K .
SORT FIELDS=¢1,4.CH,A,9,4,PD,D)
RECORD TYPE=F ,LENGTH=(1502
INPFIL VSAM
QBUTFIL ESDS
END

VSAM Utility PRINT 503

SORT causes the SORT program to load into storage and begin execution.

SORT FIELDS defines the fields to be sorted, indicated by major control to
minor, from left to right. In this example, the major sort field begins in
position 1 (the first position), is 4 bytes tong, is in character (CH) format,
and is to be sorted in ascending (A) sequence. The minor sort field begins
in position 9, is 4 bytes long, is in packed (PD) format, and is to be sorted
in descending (D) sequence. The example could be a sort of departments
in ascending sequence, and within each department are employee salaries in
descending sequence.

RECORD TYPE indicates fixed (F) length and record length (150 bytes).

INPFIL informs SORT that the input file is VSAM; SORT can determine
the type of data set from the VSAM catalog.

OUTFIL defines the type of output file, in this case entry-sequenced. This
entry should match the DEFINE CLUSTER for this data set, NONIN-
DEXED.)

Job control commands for SORTIN and SORTOUT provide the names of
the data sets. Since job control varies by operating system and by installation
requirements, check with your installation before attempting the SORT utility.

VSAM UTILITY PRINT

IDCAMS furnishes a convenient utility program named PRINT that can print the
contents of a VSAM, SAM, or ISAM data set. The following provides the steps

for OS and for DOS:
OS: //STEP EXEC PGM=I1DCAMS .
PRINT INFILEC(filename) CHARACTER or HEX or DUMP
7 *
DOS: // EXEC IDCAMS,SIZE=256K
PRINT INFILE(filename) CHARACTER or HEX or DUMP
PR

The options for PRINT indicate the format of the printout, in character, hexa-
decimal, or both (DUMP prints hex on the left and character format on the right).

INFILE(filename) matches the name iz the OS DD or DOS DLBL job
statement with any valid filename as long as the two are identical. The DD or
DILBL statement notifies VSAM which data set is to print.)

PRINT lists KSDS and ISAM data sets in key sequence and lists ESDS,
RRDS, and SAM data sets in physical sequence. You can also print beginning
and ending at a specific record.

504

Virtua! Storage Access Method (VSAM) Chap. 19

KEY POINTS

e A key-sequenced data set (KSDS) maintains records in sequence of key, such

as employee or part number, and is equivalent to indexed sequential access
method.

An entry-sequenced data set (ESDS) maintains records in the sequence
in which they were initially entered and is equivalent to sequential organi-
zation. .

A relative-record data set (RRDS) maintains records in order of relative
record number and is equivalent to direct file organization.

For the three types of data sets, VSAM stores records in groups (one or
more) of control intervals. At the end of each control interval is control
information that describes the data records. .

Before physically writing (loading) records in a VSAM data set, you must
first catalog its structure. Access method services (AMS) enables you to
furnish VSAM with such details about the data set as its name, organization
type, record length, key location, and password (if any).

VSAM furnishes two types of accessing, keyed and addressed, and three types
of processing, sequential, direct, and skip sequential.

The most common errors in processing VSAM data sets oceur because of the

need to match definitions in the program, job control, and the cataloged
VSAM data set.

The data-set-name in job control (such as CUSTOMER.INQUIRY) must
agree with the NAME(data-set-name) entry in DEFINE CLUSTER. This
name is the only one by which VSAM recognizes the data set. VSAM relates
the ACB DDNAME in the program to the job control name and the job
control name to the data-set-name.

If a data set is cataloged as KSDS, ESDS, or RRDS, each program must
access it accordingly. '

For KSDS, the length and starting position of the key in a record must agree
with the KEYS entry in DEFINE CLUSTER and, for direct input, with the
defined ARG in the OPTCD.

Every program that references the data set defines the fields with identical
formats and lengths in the same positions; the actual field names need not
be identical. You may define as character any input field in a record that
the program does not reference. The simplest practice is to catalog all record
definitions in the assembler source library and COPY the definition into the
program during assembly.

After each OPEN, CLOSE, GET, PUT, and SHOWCB, test register 15 for
success or failure, and use SHOWCS (as well as TESTCB) as a debugging
aid.

. s

Chap. 19 Problems 505

PROBLEMS

19-1. What are the three types of VSAM data sets, and how do they differ?
19-2. Explain control interval, control interval split, and RBA.
19-3. Assume a KSDS that contains records with keys in two control areas as follows:

Control area 1: 360, 373, 385
390, 412, 415
Control area 2: 420, 475, 480
512, 590, 595

What are the contents of (a) the two sequence sets; (b) the index set?

19-4. What is the program that catalogs the structure of 2 VSAM data set, and what are
its three component levels?

19-5. Code DEFINE CLUSTER for the data-set-name CUSTOMER.FILE, assuming 20
blocks, ESDS, and 100-byte records.

19-6. Code job control (OS DD and DOS DLBL) for the data set in Problem 19-5 with
filename CUSTVS.

19-7. Code the ACB macro named CUSVSIN for the data set in Problem 19-6 for addressed
sequential input and an EXLST macro named EOFCUS for end-of-file.

19-8. Code the RPL macro named RPLCUSIN for the ACB in Problem 19-7 with an mput
area pamed CUSVSREC.

19-9. Code the GET macio to read the data set in Problem 19-8.

19-10. Write a program that creates a KSDS supplier file from the following input records:

01-0S Supplier number

f6-25 Supplier name

26-46 S5treet

47-67 City

€8-74 Amount payable

75-80 Date of last purchase (yymmdd)

Store the amount payable in packed format.

20

INDEXED SEQUENTIAL
ACCESS METHOD
(ISAM)

506

OBJECTIVE

To explain the design of indexed sequential access
method and its processing requirements.

Indexed sequential access method (ISAM) is availabie in many variations on mi-
crocomputers, minicomputers, and mainframes, although the preferred method
under DOS/VS and OS/VS is the newer VSAM.

A significant way in which ISAM (and other nonsequential file organization
methods) differs from sequential organization is that the record keys in an indexed
file must be unique; this is a system requirement, not just a programming practice.
Consequently, an indexed file is typically a master file. Also, there is a clear
difference between updating a sequential file and updating an indexed file. When
you update a sequential file, you rewrite the entire file; this practice leaves the
original file as a convenient backup in case the job must be rerun. When you
update an indexed file, the system rewrites records in the file directly in place,
thereby providing no automatic backup file. To create a backup, you periodically
copy the file onto another device.

The flexibility of indexed sequential access method is realized at some cost

o

- ;
g

Characteristics of Indexed Sequential Files 507

in both storage space and accessing time. First, the system requires various levels
of indexes to help locate records in the file. Second, the system stores new, added
records in special reserved overflow areas.

Check that your system supports ISAM before attempting to use it.

CHARACTERISTICS OF INDEXED SEQUENTIAL FILES

ISAM initially stores records sequentially and permits both sequential and random
processing. The features that provide this flexibility are indexes to locate a correct
cylinder and track and keys to locate a record on a track.

Keys

A key is arecord control field such as customer number or stock number. Records
in an indexed file are in sequence by key to permit sequential processing and to
aid in locating records randomly, and blocks are formatted with keys. That is,
ISAM writes each block immediately preceded by the highest key within the block,
namely, the key of the last or only record in the block. The key is usually a.lso
embedded within each data record, as normal.

Unblocked Records

This is the layout of keys for unblocked records:

lkTay 201|_Lrecord 201| |key 2(§H;3cord 205 |_Ikey 20a Irecord 2061

The records could represent, for example, customer numbers, and the keys could
be for customer numbers 201, 205, and 206. In this example, the key is 3 characters
long and the data record is the conventional size. Under unblocked format, a key
precedes each block containing one record.

Blocked Records

This is the layout of keys for blocked records based on the preceding unblocked
example:

lkey 206' Irecord 201 |record 205|record 206

Under blocked format, the key for the last record in the block, 206, precedes the
block.

ISAM automatically handles this use of keys, and when you perform a read
operation, the system delivers the block, not the separate key, to main storage.

508 Indexed Sequential Access Method (ISAM) Chap. 20

Indexes

To facilitate locating records randomly, ISAM maintains three levels of indexes
on disk: track index, cylinder index, and an optional master index.

Track index. When ISAM creates a file, it stores a track index in track 0
of each cylinder that the file uses. The track index contains the highest key number
for each track on the cylinder. For example, if track 4 on cylinder 12 contains
records with keys 201, 205, 206, and 208, the track index contains an entry for key
208 and a reference to cylinder 12, track 4. If a disk device bas ten tracks per
cylinder, there are ten key entries for each track index, in ascending sequence.

Cylinder index. When ISAM creates a file, it stores a cylinder index on a
separate cylinder containing the highest key for each cylinder. For example, if
the file is stored on six cylinders, the cylinder index contains six entries.

Master index. An optional master index facilitates locating an appropriate
cylinder index. This index is recommended if the entries in the cylinder index
exceed four cylinders—a very large file.

PROCESSING AN INDEXED FILE

Consider a small indexed file containing 14 records on cylinder 5, with tracks 1
and 2 containing five records and track 3 containing four. This area is known as
the prime data area. Track 1, for example, contains records with keys 205, 206,
208, 210, and 213. Assume that records are suitably blocked.

TRACK DATA RECORDS ON CYLINDER 5
1 205 206 208 210 213
2 214 219 220 222 225
3 226 227 230 236 unused

Track 0 of cylinder 5 contains the track index, with an entry indicating the
high key for each track. The track index entries specify that the highest keys on
cylinder 5, tracks 1, 2, and 3 are 213, 225, and 236, respectively:

track index key cylinder track key cylinder track key cylinder track

track 0 1213 0501| [225 0s02] |236 0503 |

The cylinder index contains an entry for each cylinder that contains data,

Processing an Indexed File 509

mdicating the high key for each cylinder. In this case, the only index entry is key
236 on cylinder 5 (the track number is not important in this index):

key cylinder
A
Cylinder index | 236 0500 |

As an example of processing, a program has to locate randomly a record with
key 227. The read statement directs the system to perform the following steps:

1. Check the cylinder index (assuming no master index), comparing key 227
against its first entry, 236. Since 227 is lower, the required record should be
~on cylinder 5.

2. Access the track index in cylinder 5, track 0, comparing key 227 successively
against each entry: 213 (high}, 225 (high), and 236 (low). According to the
entry for 236, the required record should be on cylinder 5, track 3.

3. Check the keys on track 3; find key 227 and deliver the record to the program’s
input area. If the key and the record do not exist, ISAM signals an error.

As you can see, locating a record randomly involves a number of additional
processing steps, although little extra programming effort is required. Even more
processing steps are involved if a new record has to be added. If ISAM has to
insert the record within the file, it may have to “bump” a record into an overflow
area.

Overflow Areas

When a program first creates a file, ISAM stores the records sequentially in a
prime data area. If you subsequently add a new record, ISAM stores it in an
overflow area and maintains links to point to it.

There are two types of overflow areas: cylinder and independent:

1. For a cylinder overflow area, each cylinder has its own overflow track area.
ISAM reserves tracks on the same cylinder as the prime data for all of its
overflow records stored on a specific cylinder. The advantage of cylinder
overflow is that less disk seek time is required to locate records on a different
cylinder. The disadvantage is an uneven distribution of overflow records:
Some of the overflow cylinders may contain many records, whereas other
overflow cylinders may contain few or none.

2. For an independent overflow area, ISAM reserves a number of separate cyl-
inders for all overflow records in the file. The advantage is that the distri-
bution of overflow records is unimportant. The disadvantage is in the ad-
ditional access time to locate records in the overflow area.

510 Indexed Sequential Access Method (ISAM} Chap. 20

A system may adopt both types: the cylinder overflow area for initial overflows
and the independent overflow area in case cylinder overflow areas overflow.

In our most recent example, adding a record with key 209 causes ISAM to
bump record 213 from track 1 into an overflow area, move 210 in its place, and
insert 209 in the place vacated by 216. The following assumes a cylinder overflow
area in track 9:

TRACK DATA RECORDS ON CYLINDER &

1 205 206 208 209 210 prime data area
2 214 219 220 222 225

3 226 227 230 236 unused

9 213 overflow area

The track index now becomes 210, with a pointer (not shown) to key 213 in the
overflow area: '

key cylinder track key cylinder tr?ck kfgiyﬁm‘:ler track
track index | 210 0501 | |225 0502 | |236 0503 |
Reorganizing an Indexed File

Because a large number of records in overflow areas cause inefficient processing,
an installation can use a program periodically to rewrite or reorganize the file.
The program simply reads the records sequentially and writes them into another
disk area. ISAM automatically follows its indexes for the input file and delivers
the records sequentially from the prime and overflow areas. It stores ali the output
records sequentially in the new prime data area and automatically creates new
indexes. At this time, the program may drop records coded for deletion.

PROCESSING DOS INDEXED SEQUENTIAL FILES

Since ISAM automatically handles indexes and overflow areas, little added pro-
gramming effort is involved in the use of indexed files. There are four approaches
to processing:

1. Load or Extend. The initial creation of an ISAM file is known as loading.
Once a file is loaded, you may extend it by storing higher-key records at the
end of the file.

2, Adding Records. New records have keys that do rot currently exist on the
file. You have to insert or add these records within the file.

e

Processing DOS Indexed Sequential Files 511

3. Random Retrieval. To update an ISAM file with data (such as sales and
payments on customer records), you use the key to locate the master record
randomly and rewrite the updated record.

4. Sequential Processing. If you bave many records to update and the new

transactions are in sequence, you can sequentially read, change, and rewrite
the ISAM master.

Load or Extend a DOS ISAM File

Loading a file creates it for the first time, and extending involves storing records
at the end. Input records must be in ascending sequence by a predetermined key,
and all keys must be unique. For load and extend, you code the usual OPEN and
CLOSE to activate and deactivate the file. Figure 20-1 uses sequential input
records to load an ISAM file named DISKIS. The new macros for this purpose
are SETFL, WRITE, ENDFL, and DTFIS.

Hame Operation Operand
[label] SETFL filename
{labell WRITE filename ,NEWKEY
[labell ENDFL filename

Let’s examine the imperative macros and the DTFIS file definition macro.

SETFL (set file load mode). SETFL initializes an ISAM file by prefor-
matting the last track of each track index. The operand references the DTFIS

name of the ISAM file to be loaded. In Fig. 20-1, SETFL immediately follows
the OPEN macro.

WRITE. The WRITE macro loads a record into the ISAM file. Operand
1 is your DTFIS filename, and operand 2 is the word NEWKEY. You store the
key and data area in a workarea (named ISAMOUT in Fig. 20-1). DTFIS knows
this area through the entry WORKL =ISAMOUT. For the WRITE statement,
ISAM checks that the new key is in ascending sequence. ISAM then transfers
the key and data area to an /O area (named IOARISAM in the figure and known
to DTFIS by IOAREAL =IOARISAM). Here ISAM constructs the count area:

WORKL=ISAMOUT: lkeyldata

10AREAL =IDARISAM: lcountlkey|data

ENDFL (end file load mode}. After all records are written and before the
CLOSE, ENDFL writes the last data block (if any), an end-of-file record, and any
required index entries.

Indexed Sequential Access Method {ISAM)

512 Chap. 20
1 FRINT ON,NODATA,NOGEN
2 PROG20A START
3 BALR 3,0
4 USING *,3
5 OFEN DISKSD,DISKIS
14 SETFL DISKIS SET TSAM LIMITS
20 ™ DISKISC,B'10011000° ANY SETFL ERRORS?
21 BO R10ERR YES — ERROR ROUTINE
22 GET DISKSD,SDISKIN GET 18T SEQ'L RECORD
29 * MAIN PROCESSING
30 A1Q0LOOP MVC ISKEYNO,ACCTIN SET UP KEY NUMBER
31 MVC ISRECORD,SDISKIN SET UP ISAM DISK RECORD
32 WRITE DISKIS,NEWKEY WRITE ISAM RECORD
37 ™ DISKISC,B'11111110" ANY WRITE ERRORS?
38 BO R10ERR YES - ERROR ROUTINE
39 _GET DISKSD,SDISKIN GET NEXT SEQ'L RECORD
45 B AlOLOOP RO - CONTINUE
47 * END-OF-PILE
48 A90END ENDFL DISKIS . END ISAM FILE LIMITS
60 ™ DISKISC,B'11000001° ANY ENDFL ERRORS?
61 BO R10ERR YES - ERROR ROUTINE
62 CLOSE DISKSD,DISKIS NORMAL TERMINATION
71 EOJ
75 * DISK ERROR ROUTINES
76 R1QERR EQU * DISK ERROR
77 * . RECOVERY ROUTINES
78 * . .
75 CLOSE DISKSD,DISKIS ABNORMAL TERMINATION
88 EOg
82 * DPECLARATIVES .
93 DISKSD DTFSD BLEKSIZE=360, SEQUENTIAL DLISK INPUT +
DEVADDR=SYS015, *
EQOFADDR=ASOEND, +
DEVICE=3340, +
IOAREAL=TOARSD1, ¥
RECFORM=FIXBLK, +
RECSIZE=90, *
TYPEFLE=INPUT, +
WORKA=YES .
154 IOARSD1 DS CL360 SEQ'L DISK BUFFER-1
156 SDISKIN DS 0CL90 SEQ'L DISK INPUT AREA
157 ACCTIN DS CLO6 * REY
158 DS CL84 * REST OF RECORD
160 DISKIS DTFIS CYLOFL=1, INDEXED SEQ'L LOAD +
DEVICE=3340, +
DSEKXTNT=2, +
IOAREAL=TOARISAM, +
IOROUT=LOAD, ¥
KEYLEN=6, +
REYLOC=1, +
KRECDS=3, +
RECFORM=FIXBLK, +
RECSIZE=90, +
VERIFY=YES, +
WORKL=ISAMOUT
209 ICARISAM DS CL284 ISAM BUFFER AREA

Figure 20-1 Program: loading 2 DOS ISAM file.

/

Processing DOS Indexed Sequential Files 513

211 ISAMOUT DS 0CL96 IsaM WORKAREA

212 ISKEINO DS CLO6 * KEY LOCATION
213 ISRECORD DS CL90 * DATA AREA
215 LTORG

216 =C '$$BOPEN '

217 =0 SSBSETFL

218 =C' §SBENDFL '

219 =C'S§S$BCLOSE"

220 =A(DISKIS)

221 =A(DISKSD)

222 =A(SDISKIN)

223 END PROG20A

Figure 20-1 (continued)

The DTFIS Macro

The maximum length for an ISAM filename is 7. In Fig. 20-1, the DTFIS entries
for the file being loaded are as follows:

CYLOFL =1 gives the number of tracks on each cylinder to be reserved for
each cylinder overflow area (if any). ’

DEVICE =3340 is the disk device containing the prime data area or overflow
area.

DSEXTNT =2 provides the number of extents that the file uses: one for each
data extent and one for each index area and independent overflow area extent.
The program in Fig. 20-1 has one extent for the prime data area and one for
the cylinder index.

IOAREAL =TOARISAM provides the name of the ISAM I/O load area. The
symbolic name, IOARISAM, references the DS buffer area. For loading
blocked records, you calculate the field length as

Count area (8) + key length (6) + block length (90 x 3) = 284
IOROUT =LOAD tells the assembler that the program is to load an ISAM
ﬁle-.

KEYLEN=6 gives the length of each record’s key.

KEYLOC =1 tells ISAM the starting location of the key in the record, where
1is the first position.

NRECDS =3 provides the number of records per block.

RECFORM =FIXBLK indicates fixed, blocked record format.

RECSIZE =90 gives the length of each record.

VERIFY =YES tells the system to check the parity of each record as it is
written.

WORKL =ISAMOUT gives the name of your load workarea, which is a DS
defined elsewhere in the program. For blocked records, you calculate the

514 Indexed Sequential Access Method {ISAM} Chap. 20

field length as
Key length (6) + data area (90 x 3) = 284
For unblocked records, you would calculate the field length as
Count area (8) + key length + “sequence link field” (10) + record length

Status Condition

On execution, ISAM macros may generate error conditions, which you may test.
- After each I/O operation, ISAM places its status in a one-byte field named
filenameC. For example, if your DTFIS name is DISKIS, ISAM calls the status
byte DISKISC. Following is a list of the 8 bits in filenameC that the system may
set when loading an ISAM file:

BIT LOAD STATUS ERROR CONDITION

Any uncorrectable disk error except wrong length record.

‘Wrong length record detected on output.

The prime data area is full.

SETFL has detected a full cylinder index.

SETFL has detected a full master index.

Dupiicate record—the current key is the same as the one

previously loaded.

6 Sequence emmor—the current key is lower than the one
previously loaded.

7 The prime data area is full, and ENDFL has no place to store

the end-of-file record.

LV I N U S T e]

The program in Fig. 20-1 uses TM operations to test DISKIS after execution
of the macros SETFL, WRITE, and ENDFL. After SETFL, for example, TM
tests whether bits 0, 3, and 4 are on. If any of the conditions exist, the program
executes an error routine (not coded) where the program may isolate the error
and issue anr erTor message.

The job control commands also vary. First, the DLBL job entry for “codes”
contains ISC, meaning indexed sequential create, and second, there is an EXTENT
command for both the cylinder index and the data area.

Random Retrieval of an ISAM File

The mair purpose of organizing a file as indexed sequential is to facilitate the
random accessing of records. For this, there are a number of special coding
requirements. The program in Fig. 20-2 randomly retrieves records in the file

Processing DOS Indexed Sequential Files

515

created in Fig. 20-1. The program reads a file of modification records in random
sequence, with changes to the ISAM master file. For each modification record,
the program uses the account number (key) to locate the correct ISAM record,
corzects it, and then updates the record on the ISAM file.

ISAM macros for random retrieval,

The new macros for random retrieval

Gperation Operand
ell READ filename,KEY .
ell WAITF filename
ell WRITE filename,KEY

READ causes ISAM to access a required record from the file. Operand 1
contains the DTFIS filename, and operand 2 contains the word KEY. You
store the key in the field referenced by the DTFIS entry KEYARG. In Fig.
20-2, KEYARG=KEYNO. For each modification record processed, the
program transfers the account key number to KEYNO.

WAITF allows completion of a READ or WRITE operation before another
is attempted. Since a random retrieval reads and rewrites the same record,
you must ensure that the operation is finished. Code WAITF anywhere
following a READ or WRITE and preceding the next READ or WRITE.

are
Name
[lab
[lab
[lab
1 PRINT
3 PROG208B START
4 BALR
5 USING
6 OPEN
15 GET
22 *
23 A1O0LOOP MVC
24 READ
29 ™
30 BO
31 WAITF
36 MVC
37 MVC
38 MVC
39 PACK
40 MVC
42 WRITE
47 ™
48 BO
49 GET
55 B

ON,NODATA , NOGEN

3.0
*,3
FILEIN,DISKIS
FILEIN,RECDIN

MAIN PROCESSI
ISKETNO,ACCTIN
DISKIS,KEY
DISKISC,B'11010101"
R1OERR

DISKIS

ACCTDKO, ACCTIN
NAMEDKO ,NAMEIN
ADDRDKO,ADDRIN
BALNDKO , BALNIN
DATEDKO , DATEIN
DISKIS,KEY
DISKISC,B'11000000°
R10ERR
FILEIN,RECDIN
A10LOOP

READ 1ST INPUT RECORD

NG

SET UP KEY NUMEER
READ ISAM RANDOMLY
ANY READ ERROR?

YES - ERROR ROUTINE
COMPLETE READ QOPERATION
MOVE FIELDS
* TO DISK

* WORRAREA
*

*

WRITE NEW ISaM RECORD
ANY WRITE ERROR?

* YES - ERROR ROUTINE
READ NEXT INPUT RECORD
* NO - CONTINUE

Figure 20-2 Program: random retrieval of 2 DOS ISAM file.

516 Indexed Sequential Access Method (ISAM) Chap. 20
57 % END-QF-FILE
58 ASOEND CLOSE FILEIN,DISKIS TERMINATION
67 EOT
71 * DISK ERROR ROUTINES
72 RIOERR EQU * DISK ERROR
73 * . RECOVERY ROUTINES
74 B A90END
76 * - DECLARATIVES
77 FILEIN . DTFCD DEVADDR=SYSIPT, INPUT FILE +
IOAREA1=TOARINI, . +
BLKSIZE=80, +
DEVICE=2540, +
EQFADDR=AS0END, +
TYPEFLE=INPUT, +
WORKA=YES
101 IOARIN1 DS CL80 INPUT BUFFER 1
103 RECDIN DS 0CLS0 INPUT AREA:
104 CODEIN DS CLO2 * RECORD CODE '01°'
105 ACCTIN DS CLO6 * ACCOUNT NO.
106 NAMEIN DS CL20 * NAME
107 ADDRIN DS CL40 _ * ADDRESS
108 BALNIN DS ZL06* 0000.00° * BALANCE
109 DATEIN DS CLO6*DDMMYY * DATE
111 DISKIS DTFIS CYLOFL=l, ISAM RANDOM RETRIEVAL +
DEVICE=3340, +
DSKEXTNT=2, +
IOAREAR=TOARISAM, +
TOROUT=RETRVE, +
KEYARG=ISKEYNO, +
KEYLEN=6, +
KEYLOC=1, +
NRECDS=3, +
RECFORM=FIXBLK, +
RECSIZE=90, +
PYPEFLE=RANDOM, +
VERIFT=YES, +
WORKR=ISAMOUT
193 TOARISAM DS CL270 15aM SBUFFER AREA
195 ISAMOUT DS OCLS0 ISAM WORKAREA:
186 ISKEYNO DS CLO6 *= EKEY AREA
197 ACCTDKO DS CLO6 * ACCOUNT NO.
198 NAMEDKO DS CL20 * NAME
199 ADDRDKO DS CL40 * ADDRESS
200 BALNDRO DS PLO4 * BALANCE
201 DATEDRO DS CLO6 * DATE
202 DC CL14' ' * RESERVED
204 LTORG
205 =C' §SBOPEN '
206 =C' SSBCLOSE'’
207 =3 (FILEIN)
208 =A (RECDIN)
209 =A(DISKIS)
210 END PROGZ20B

Figure 20-2 (continued)

_ J

Processing DOS Indexed Sequential Files 517

WRITE rewrites an ISAM record. Operand 1 is the DTFIS filename, and
operand 2 is the word KEY, which refers to your entry in KEYARG.

The DTFIS Macro

In Fig. 20-2, the DTFIS entries for the random retrieval include these:

IOAREAR =JOARYISAM provides the name of the ISAM /O retrieval area.
The symbolic name, [OARISAM, references the DS retrieval area for un-
blocked records. For blocked records, the buffer size is

Record length (including keys) X blocking factor

For unblocked records, the buffer size is:

Key length + “sequence link field” (10) + record length

TYPEFLE =RANDOM means that the system is to retrieve records randomly
by key. Other entries are SEQNTL for sequential and RANSEQ for both
random and sequential.

WORKR =ISAMOUT gives the name of your retrieval workarea.

Status Condition

The status byte for add and retrieve is different from load. Following is a list of
the 8 bits in filenameC that the system may set:

8IT

P VAR O B

6
7

ADD AND RETRIEVE STATUS CONDITION

Any uncorrectable disk error except wrong length record.
‘Wrong length record detected on an I/O operation.

End-of-file during sequential retrieval (not an error).

The requested record is not in the file.

The ID given to SETFL for SEQNTL is outside the prime data
limnits.

Duplicate record—an attempt to add a recoxd that already ex-
ists in the file.

The cylinder overflow area is full.

A retrieval operation is trying t0 process an overflow record.

The program in Fig. 20-2 uses TM operations to test DISKIS after execution
of the macros READ and WRITE. Ounce again, the program would isolate the
error and issue ap error message.

518 Indexed Sequential Access Method {ISAM) Chap. 20
Sequential Reading of an ISAM File

Sequential reading of an ISAM file involves the use of the SETL., GET, and ESETL
macros. SETL (Set Low) establishes the starting point of the first record to be
processed. [Its options include these:

o Set the starting point at the first record in the file:
SETL filename,BOF

e Set the starting point at the record with the key in the field defined by the
DTFIS KEYARG entry:

SETL filename,KEY

o Set the starting point at the first record within a specified group. Forexample,
the KEYARG field could contain “B480000™ to indicate all records with key
beginning with B48:

SETL filename,GKEY

The ESETL macro terminates sequential mode and is coded as ESETL,
filename.

DTEFIS entries include these:

IOAREAS =buffername for the name of the buffer area. You calculate the
buffer size just as you do for random retrieval.

IOROUT=RETRVE to indicate sequential retrieval.

TYPEFLE =SEQNTL or RANDOM for sequential or random retrieval.

KEYLOC=n to indicate the first byte of the key in a record, if processing
begins with a specified key or group of keys and records are blocked.

To delete a record, you may reserve a byte in the record and store a code in
it. A practice is to use the first byte to match OS requirements. Subsequently,
your program may test for the code when retrieving records and when reorganizing
the file.

PROCESSING OS INDEXED SEQUENTIAL FILES

Processing ISAM files under OS is similar to DOS processing, except that QISAM
(queued indexed sequential access method) is used for sequential processing and
BISAM (basic indexed sequential access method) is used for random processing.

Processing OS Indexed Sequential Files 519

The Delete Flag

Under OS, the practice is to reserve the first byte of each record with a
delete flag, defined with a blank when you create the file. You also code
OPTCD =L in the DCB macro or the DD command. When you want to delete
a record, store X’FF’ in this byte. QISAM subsequently will not be able to re-
trieve the record. QISAM automatically drops the record when the file is re-
organized.

Let’s examine some features of OS ISAM processing.

Load an ISAM File

The OS imperative macros concerned with loading an ISAM file are the conven-
tional OPEN, PUT, and CLOSE. DCB entries are as follows:

DDNAME Name of the data set.

DSORG IS for mndexed sequential.

MACRF (PM) for move mode or (PL) for locate mode.
BLKSIZE Length of each block.

CYLOFL Number of overflow tracks per cylinder.

KEYLEN Length of the key area.

LRECL Length of each record.

NTM Number of tracks for the master index, if any.
OFTCD Options required, such as MYLU in any sequence:

M establishes a master index (or omit M).

Y controls use of cylinder overflow areas.

I controls use of an independent area.

L is a delete flag to cause bypassing records with X’FF in the

first byte.
U (for fixed length only) establishes the track index in main
storage.

RECFM Record format for fixed/variable and unblocked/blocked: F,
FB, V, and VB.

RKP Relative location of the first byte of the key field, where 0 is
the first location. (For variable-length records, the value is 4
or greater.)

Sequential Retrieval and Update

Under OS, sequential retrieval and update involve the OPEN, SETL., GET, PUTX,
ESETL, and CLOSE macros. Once the data set has been created with standard

520 Indexed Sequential Access Method (ISAM) Chap. 20

labels, many DCB entries are no longer required. DDNAME and DSORG=IS
are still used, and the following entries are available: :

MACRF=Centry) The entries are
(GM) or (GL) for input
(PM) or (PL) for output
(GM,SK,PU) if read and rewrite in place, where
S is use of SETL, K is key or key class, and PU is

use of PUTX macro
EODAD=eofaddress Used for input, if reading to end-of-file.
SYNAD=address Requests optional error checking.

The SETL macre. SETL (Set Low address) establishes the first sequential
record to be processed anywhere within the data set. The general format is the
following:

Name Operation Operand
[labell SETL deb-name,start-position,address

The start-position operand has the following options:

B Begin with the first record in the data set. (Omit operand 3 for B
or BD.)
K Begin with the record with the key in the operand 3 address.

KC Begin with the first record of the key class in operand 3. A key class
is any group of keys beginning with a common value, such as all keys
H48xxxx. If the first record is “deleted,” begin with the first non-
deleted record.

I Begin with the record at the actual device address in operand 3.

BD, KD, KDH, KCD, ard ID cause retrieval of only the data portion of a record.
Here are some examples of SETL to set the first record in a file named
DISKIS, using a 6-character key:

¢ Begin with the first record in the data set:
SETL DISKIS,B
» Begin with the record with the key 012644:

SETL DISKIS,K,KEYADD1

Processing OS Indexed Sequential Files

PROGZ0C START

521

SAVE (14.12)
BALR 3.0
USING *,3
ST 13,5AVEAREA+4
LA 13,SAVEAREA
OPEN (ISFILE)
SETL ISFILE,B START 1ST RECORD OF DATA SET
TIME
ST 1,TODAY
SP TODAY ,=P'5000" CALC DATE 5 YEARS AGO
GET ISFILE GET 1ST RECORD
AIQLOOP CP 26(3,1),TODAY 5 YEARS OR OLDER?
BNL A20 * NO - BIPASS
MVI 0{1),X*FF* * ¥ES - SET DELETE CODE
PUTX ISFILE * RE-WRITE RECORD
A20 GET ISFILE GET NEXT
B A10L0OOP LOOP
A90EQOF ESETL ISFILE END-OF-FILE
CLOSE (ISFILE)
L 13,5AVEAREA+4

RETURN (14,12)

SAVEAREA DS 18F
TODAY DS F
ICAREA DS CL100

TODAY'S DATE: O0YYDDD+
DISK I0 AREAM

ISFILE DCB DDNAME=TINDEXDD,
DSORG=IS,
EODAD=A90ECF,
MACRF=(GL ,S,PU)
LTORG

END PROGZ0C

+ + +

Figure 20-3 Program: sequential retrieval of an OS ISAM file.

» Begin with the first record of the key class 012:

SETL DISKIS,KC,KEYADD2
KEYaDD1 DC C 012644" &-character key
KEYaDD2 DC gro127,XL300" 3-character key class

The ESETL macro, used as ESETL dcb-name, terminates sequential re-
trieval. If there is more than one SETL, ESETL must precede each one.

The program in Fig. 20-3 reads an ISAM file sequentially and inserts a delete
code in any record that is more than five years old. The TIME macro delivers
the standard date from the communication region as packed 00yyddd +, and the
date in the record (positions 26-28) is in the same format. The PUTX macro
rewrites an obsolete record with a delete byte in the first position.

Indexed Sequential Access Method (ISAM) Chap. 20

KEY POINTS

The indexed system writes a key preceding each block of records. The key
is that of the highest record in the block.

The track index, cylinder index, and master index help the system locate
records randomdly. '

e The track index is in track 0 of each cylinder of the file and contains the

highest key number for each track of the cylinder.

o The cylinder index is on a separate cylinder and contains the key number of

the highest record on the cylinder.

The optional master index is recommended if the cylinder index exceeds four
cylinders in size.

The master index facilitates locating keys in the cylinder index, the cylinder
index facilitates locating keys in the track index, and the track imdex facilitates
Iocating the track containing the required record.

ISAM creates a file sequentially in a prime data area. Subsequent additions
of higher keys append to the end, and additions of lower keys cause records
to bump into an overflow area.

Cylinder overflow areas reserve tracks on a cylinder for all overflows in that
cylinder. This method reduces disk access time.

Independent overflow areas reserve separate cylinders for overflows from the
entire file. This method helps if there is an uneven distribution of overflow
records—-that is, many overflow records in some cylinders and few or none
in others.

PROBLEMS

What is the purpose of (a) the master index; (b) the cylinder index; (c) the track
index?

An indexed file contains three records per block. For a block containing records
with keys 542, 563, and 572, what is the key for the block?

An indexed file contains unblocked records on cylinder 8 beginning with track 1.
Assuming four records per track, show the organization of the records on the tracks
for keys 412, 413, 415, 417, 419, 420, 424, 425, 432, 433.

For the file ip Problem 20-3, show the contents of (a) the track index; (b) the cylindex
index.

For the file in Problem 20-3, show the records on the tracks if a program adds a
record with key 422. Assume that track 20 handles overflow records.

What are the two overflow areas and their advantages and disadvantages? Under
what circumstances would you recommend use of both types of overflow areas?

‘.__ /;

Chap. 20 Problems

523

20-7. What is the normal procedure to remove records from an overflow area into proper
sequence in the prime data area?

20-8. What is the common method for deleting records from an indexed file for (a) DOS;

(b) 0S?

20-9. What are the different ways to process an ISAM file? What is the difference between
extending and adding records?

20-10. Write a program that creates an ISAM supplier file on disk from the following input

records:

01-05
06-25
26-46
47-67
68-74
75-80

Supplier number

Supplier name

Street

City

Amount payable

Date of last purchase (Cyymmdd)

Store the amount payable in packed format.

OPERATING
SYSTEMS

524

OBJECTIVE

To introduce basic operating systems for DOS and 05
and job control requirements.

This chapter introduces material that is suitable for more advanced assembler
programming. The first section examines general operating systems and the var-
ious support programs. Subsequent sections explain the functions of the program
status word and the interrupt system. Finally, there is a discussion of input/output
channels, physical IOCS, and the input/output system.

These topics provide an introduction to systems programming and the rela-
tionship between the computer hardware and the manufacturer’s software. A
knowledge of these features can be a useful asset when serious bugs occur and
when a solution requires an intimate knowledge of the system.

In an installation, one or more systems programmers, who are familiar with
the computer architecture and assembler Ianguage, provide support for the oper-
ating system. Among the software that IBM supplies to support the system are
language translators such as assembler, COBOL, and PL/ and utility programs
for cataloging and sorting files. '

Operating Systems 525
OPERATING SYSTEMS _

Operating systems were developed to minimize the need for operator intervention
during the processing of programs. An operating system is a collection of related
programs that provide for the preparatior and execution of a user’s programs.
The system is stored on disk, and part of it, the supervisor program, is loaded into
the lower part of main storage. .

You submit job control commands to tell the system what action to perform.
For example, you may want to assemble and execute a source program. To this
end, you insert job comtrol commands before and after the source program and
submit it as a job to the system. In simple terms, the operating system performs
the following steps:

1. Preceding the source program is a job control command that tells the operating
system to assemble a program. The sysiem loads the assembler program
from a disk library into storage and transfers control to it for execution.

2. The assembler reads and translates the source program into an object program
and stores it on disk.

3. Another job control command tells the system to link-edit the object program.
The system loads the linkage editor from a disk library into storage and
transfers control to it for execution.

4. The linkage editor reads and translates the object program, adds any required
input/output modules, and stores it on disk as an executable module.

5. Another job control command tells the system to execute the executable
module. The system loads the module into storage and transfers control to
it for execution.

6. The program executes until normal or abnormal termination, when it returns
processing control to the system.

7. A job command tells the system that this is the end of the job, since 2 job
may consist of any number of execution steps. The system then terminates
that job and prepares for the next job to be executed.

Throughout the processing, the system continually intervenes to handle all
input/output, interrupts for program checks, and protecting the supervisor and any
other programs executing in storage.

IBM provides various operating systems, depending on users’ requirements,
and they differ in services offered and the amount of storage they require. These
are some major operating systems:

DOS Disk Operating System Medium-sized systems

DOS/VSE Disk Operating System Medium-sized systems with
virtual storage

OS/VS1 Operating System Large system

526 Operating Systems Chap. 21
QS/VS2 Operating System Large system
OS/MVS Operating System Large system

Systems Generation

The manufacturer typically supplies the operating system on reels of magnetic tape,
along with an extensive set of supporting manuals. A systems programmer has
to tailor the supplied operating system according to the installation’s requirements,
such as the number and type of disk drives, the number and type of terminals to
be supported, the amount of processing time available to users, and the levels of
security that are to prevail. This procedure is known as systems generation, ab-
breviated as sysgen.

Operating System Organization

Figure 21-1 shows the general organization of Disk Operating System (DOS), on
which this text is largely based. The three main parts are the control program,
system service programs, and processing programs.

Control Program

The control program, which controls all other programs being processed, consists

of initial program load (IPL), the supervisor, and job control. Under OS, the
functions are task management, data management, and job management.

Disk operating system
Control program System service programs Processing programs
Supervicor Job IPL Linkage Librarian Translators Utility User
control editor programs programs
Source Relocatable Core image Procedure
statement library Iibrary library

Iibrary
Figure 21-1 Disk operating system organization.

QOperating Systems 527

IPL is a program that the operator uses daily or whenever required to load
the supervisor into storage. On some systems, this process is known as booting
the system.

Job control handles the transition between jobs run on the system. Your
job commands tell the system what action to perform next.

The supervisor, the nucleus of the operating system, resides in lower storage,
beginning at location X'200’. The system loads user (problem) programs in storage
following the supervisor area, resulting in at least two programs in storage: the
supervisor program and one or more problem programs. Only one is executing
at any time, but control passes between them.

The supervisor is concerned with handling interrupts for input/output devices,
fetching required modules from the program library, and handling errors in program
execution. An important part of the supervisor is the input/output control system
(IOCS), known under OS as data management.

Figure 21-2 (not an exact representanon) llustrates the general layout of the
supervisor in main storage. Let’s examine its contents.

1. Communication Region. This area contains the following data:

LOCATION CONTENTS

00-07 The current date, as mm/dd/yy or dd/mm/yy

08-11 Reserved

12-22 User area, set to zero when a JOB command is read to
provide communication within a job step or between job
steps

23 User program status indicator (UPSI)

24-31 Job name, entered from job control

32-35 Addzess: highest byte of problem program area

36-39 Address: highest byte of current problem program phase

40-43 Address: highest byte of phase with highest ending address

44-45 Length of label area for problem program

2. Channel Scheduler. The channels provide a path between main storage

CPU bytes Fixed storage locations

1. Communications region
2. Channei scheduler

Supervisor 3. Storage protection
resident 4. Interrupt handling
areg 5. System loader

6. Error recovery routines
7. Program information block
8. 1O devices control table

Transient area 9. Transsent area

ﬁ;Proble.m program{s)

3 Figure 21-2 Supervisor areas.

528 Operating Systems Chap. 21

and the input/output devices for all I/O interrupts and permit overlapping of pro-
gram execution with I/O operations. If the requested channel, control unit, and
device are available, the channel operation begins. If they are busy, the channel
scheduler places its request in a queue and waits until the device is available. The
channel notifies the scheduler when the /O operation is complete or that an error
has occurred.

3. Storage Protection. Storage protection prevents a problem program from
erroneously moving data into the supervisor area and destroying it. Under a
multiprogramming system, this feature also prevents a program in one partition
from erasing a program in another partition.

4. Interrupt Handling. An interrupt is a signal that informs the system to
interupt the program that is currently executing and to transfer control to the
appropriate supervisor routine. A later section on the program status word covers
this topic in detail.

5. System Loader. The system loader is responsible for loading programs
into main storage for execution.

6. Error Recovery Routines. A special routine handles error recovery for
each I/O device or class of devices. When an error is'sensed, the channel scheduler
invokes the required routine, which attempts to correct the error.

7. Program Information Block (PIB). The PIB contains information tables
that the supervisor needs to know about the current programs in storage.

8. 1/O Devices Control Table. This area contains a table of /O devices that
relate physical unit addresses (X'nnn’) with logical addresses (SYSxxx).

9. Transient Area. This area provides temporary storage for less used rou-
tines that the supervisor loads as required, such as OPEN, CLOSE, DUMP, end-
of-job handling, some error recovery, and checkpoint routines.

System Service Programs
System service programs include the linkage editor and the Hbrarian.
Linkage editor. The linkage editor has two main functions:

1. To include input/output modules. An installation catalogs I/O modules in
the system library (covered next). When you code and assemble a program,
it does not yet contain the complete instructions for handling input/output.
On completion of assembly, the linkage editor includes all the required O
modules from the library.

2. To link together separately assembled programs. You may code and assem-
ble a number of subprograms separately and link-edit these subprograms into

Operating Systems 529

one executable program. The linkage editor enables data in one subprogram
to be recognized in another and facilitates transfer of control between sub-
programs at execution time.

Librarian. The operating System contains libraries on a disk known as SYSRES
to catalog both IBM programs and the installation’s own commonly used programs
and subroutines. DOS/VS supports four libraries:

1. The source statement library (SSL) catalogs as a book any program, macro,
or subroutine still in source code. You can use the assembler directive COPY
to include cataloged code into your source program for subsequent assem-
bling.

2. The relocatable library (RL) catalogs frequently used modules that are as-
sembled but not yet ready for execution. The assembler directs the linkage
editor to include /O modules automatically, and you can use the INCLUDE
command to direct the linkage editor to include your own cataloged modules
with your own assembled programs.

3. The core image library (CIL) contains phases in executable machine code,
ready for execution. The CIL contains, for example, the assembler, COBOL,
P11, and other translator programs, various utility programs such as LINK
and SORT, and your own production programs ready for execution. To
request the supervisor to load a phase from the CIL into main storage for
execution, use the job control command // EXEC phasename.

4. The procedure library (PL) contains cataloged job control to facilitate au-
tomatic processing of jobs.

The OS libraries vary by name according to the version of OS, but basically
the OS libraries equivalent to the DOS source statement, relocatable, and core
unage are, respectively, source library, object ibrary, and load library, and they
serve the same functions.

Processing Programs
Processing programs are cataloged on disk in three groups:

1. Language translators that IBM supplies with the system include assembler,
PL/, COBOL, and RPG. '

2. Utility programs that IBM supplies include such special-purpose programs as
disk ipitialization, copy file-to-file, and sort/merge.

3. User-written programs that users in the installation write and that IBM does
not support. All the programs in this text are user-written programs.

For example, the job command // EXEC ASSEMBL.Y causes the system to

530 Operating Systems Chap. 21

load the assembler from the CIL into an available area (‘“‘partition™) in storage
and begins assembling a program. The job command // OPTION LINK directs
the assembler to write the assembied module on SYSLNK in the relocatable library.

Once the program is assembled and stored on SYSLNK, the job command
/I EXEC LNKEDT tells the linkage editor to load the moduie from SYSLNK into

FIXED STORAGE LOCATIONS
AREA, dec. | Hex addr |EC only| Function
0 7 0 Initial program loading PSW, restart new ESW
8- 15 8 Inittal program loading CCW1, restart old PSW

16- 23 10 Initial program loading CCW2

24- 31 18 External old PSW

32- 39 20 Supervisor Call old PSW

40- 47 28 Program oid PSW

48- 55 30 Machinecheck old PSW

56- 63 38 Input/output old PSW

64- 71 40 Channel status word (see diagram)

72- 75 48 Channel address word (0-3 key, 4-7 zeros, 8-31 CCW address)

80- 83 50 Interval timer

88- 95 58 External new PSW

96-103 80 Supervisor Czll new PSW
104-111 68 Program new PSW
112-119 70 Machine-check new PSW
120-127 78 Input/output new PSW
132-133 84 CPU address assoc’d with external interruption, or unchanged
132-133 84 X CPU address assoc’d with external interruption, or zeros
134-135 86 X External interruption code
136-139 88 X SVC interruption (0~12 zeros, 13-14 ILC, 15:0, 16~-31 code)
140-143 &c X Program interrupt (0~12 zeros, 13-14 ILC, 15:0, 16-31 code)
144147 80 X Translation exception address (0-7 zeros, 8-31 address)
148-149 94 Monitor elass (0-7 2eros, 8-15 class number)
150-151 9% X PER interruption code (0-3 code, 4-15 zeros)
152-155 98 X PER address (0-7 zeros, 8-31 address)
156-159 oC Monitor code (0~7 zeros, 8-31 monitor code)
168-171 A8 Channe ID (0-3 type, 4-15 model, 16-31 max, IOEL length)
172-175 AC YO extended logout address (0-7 unused, 8-231 address)
176-179 EBO Limited channel logout (see diagram)
185-187 B9 X T/O address (0-7 zeros, 8-23 address)
216-223 D8 CPU timer save area
224-231 ED Clock comparator save area
232239 E3 Machine-check intenuption code
248-251 F8 Failing processor storage address (0-7 zeros, 8-31 address)
252-255 FC Region code®
256-351 100 Fixed logout area®
352-383 160 Floating-point register save area
384447 180 (GGeneral register save area
448-511 1C0 Control register save area
512t 200 CPU extended logout area (size varies)

*May vary among model:s: see system library manuals for specific model
tLocation may be changed by programming (bits 828 of CR 15 specify address)
Figure 21-3 Fixed storage locations.

'..\\-/

Multiprogramming 531

storage, to complete addressing, and to include IO modules from the RL. As-
suming that there was no job command to catalog it, the linkage editor writes the
linked phase in the CIL in a noncatalog area. I the next job command is // EXEC
with no specified phasename, the supervisor loads the phase from the noncatalog
area into storage for execution. The next program that the linkage editor links
overlays the previous one in the CIL noncatalog area.

The job command // OPTION CATAL instead of // OPTION LINK tells the
system both to link the program and to catalog the linked phase in the catalog area
of the CIL.. You normally catalog production programs in the CIL and for im-
mediate execution use the job command // EXEC phasename,

FIXED STORAGE LOCATIONS

As mentioned earlier, the first X*20{’ bytes of storage are reserved for use by the
CPU. Figure 21-3 lists the contents of these fixed storage locations.

MULTIPROGRAMMING

Muitiprogramming is the concurrent execution of more than one program in stor-
age. Technically, a computer executes only one instruction at a time, but because
of the fast speed of the processor and the relative slowness of I/O devices, the
computer’s ability to service a number of programs at the same time makes it
appear that processing is simultaneous. For this purpose, an operating system that
supports multiprogramming divides storage into various partitions and is conse-
quently far more complex than a single-job system.

The nurmber and size of partitions vary according to the requirements of an
installation. One job in each partition may be subject to execution at the same
time, although only one program is actually executing. Each partition may handle
jobs of a particular nature. For example, one partition handles relatively short

- jobs of high priority, whereas another partition handles large jobs of lower priority.

The job scheduler routes jobs to a particular partition according to its class.
Thus a system may assign class A to certain jobs, to be run in the first partition.

In Fig. 21-4, the job queue is divided into four classes, and main storage is
divided into three user partitions. Jobs in class A run in partition 1, jobs in classes
B and C run in partition 2, and jobs in class P run in partition 3.

Depending on the system, storage may be divided into many partitions, and
a job class may be designated to run in any one of the partitions. Also, a partition
may be designated to run any number of classes.

When an operator uses the IPL procedure to boot the system, the supervisor
is loaded from the CIL into low storage. The supervisor next loads job control
from the CIL into the various partitions. The supervisor then scans the system
readers and terminais for job control commands.

When a job completes processing, the job scheduler selects another job from

532 Operating Systems Chap. 21

Supervisor
Class A| job 1,job 4, job 5
asal e \ Partition |
B| job7 (class A)
cl job2,jobs \ Partition 2
T (sB,0)
P| job3,jobé
Job queue on disk P?zﬁio;)‘?’
Main storage Figure 21-4 Job queue and partitions.
the queue to replace it. For example, if partition 1 is free, the job scheduler in
Fig. 21-4 selects from the class A queue either the job with the highest priority or,
if all jobs have the same priority, the first job in the queue.

The system has to provide a more or less equitable arrangement for processing
jobs in each partition. Under time slicing, each partition is allotted in turn a time
slice of so many milliseconds of execution. Control passes to the next partition
when the time has expired, the job is waiting for an I/O operation to complete, or
the job is finished.

VIRTUAL STORAGE

In a multiprogramming environment, a large program may not fit entirely in a
partition. As a comsequence, both DOS/VS and OS/VS support a virtual storage
system that divides programs into segments of 64X bytes, which are in turn divided
into pages of 2K or (usually) 4K bytes. On disk, the entire program is contained
as pages in a page data set, and in storage VS arranges a page pool for as much
of the program as it can store, as shown in Fig. 21-5. As a consequence, a program
that is 100K in $ize could run in a2 64K partition. If the executing program ref-
erences an address for a part of the program that is not in storage, VS swaps an
unneeded page into the page data set on disk and pages in the required page from

Main storage Disk

Page pool Page data set Figure 21-5 Page pool.

Program Status Word: PSW 533

disk into the page pool in storage. (Actually, VS swaps onto disk only if the
program has not changed the contents of the page.) The 16 control registers handle
much of the paging operations.

Since a page from disk may map into any page in the pool, VS has to change
addresses; this process is known as dynamic address translation (DAT).

When running a realtime application such as process control, a data com-
munications manager, or an optical scan device, you may not want VS to page it
out. It is possible to assign an area of nonpageable (real) storage for such jobs
or use a “page fix” to lock certain pages into real storage.

PROGRAM STATUS WORD: PSW

The PSW is a doubleword of data stored in the control section of the CPU to
control an executing program and to indicate its status. The two PSW modes are
basic control (BC) mode and extended control (EC) mode. A 0 in PSW bit 12
indicates BC mode, and a 1 indicates EC mode. EC mode provides an extended
control facility for virtual storage.

One of the main features of the PSW is to control the state of operation:’
Users of the system have no concern with certain operations such as storage man-
agement and allocation of /O devices, and if they were allowed access to every
mstruction, they could inadvertently access other users’ partitions or damage the
system. To provide protection, certain instructions, such as Start I/O and Load
PSW, are designated as privileged.

The PSW format is the same in only certain positions for each mode. Figure
21-6 illustrates the two modes, in which the bits are numbered 0 through 63 from
left to right. Some of the more relevant fields are explained next.

Bit 14: Wait state. When bit 14 is 0, the CPU is in running state executing
instructions. 'When bit 14 is 1, the CPU is in wait state, which involves
waiting for an action such as an I/O operation to be completed.

Bit 15: State. For both modes, 0 = supervisor state and 1 = problem state.
When the computer is executing the supervisor program, the bit is 0 and all
instructions are valid. When in the problem state, the bit is 1 and privileged
instructions cannot be executed.

Bits 16~31: Program interrupt code (BC mode). 'When a program interrupt
occurs, the computer sets these bits according to the type. The following
list shows the interrupt codes in hex format:

0001 Operation exception

0002 Privileged operation exception
0003 Execute exception

0004 Protection exception

0005 Addressing exception

0007
0008
0009
000A

000C
000D
000E

PROGRAM STATUS WORD (BC Mode)

Operating Systems Chap. 21

Channel masks | E P"}"‘:"’Y‘ 3 cMwp Iuterruption code
0 6]7]8 11|12 15]16 23|24 31
1Lc| cc | Program Instruction address
mask
32 [s4 36 8940 47]48 55|56 63
05 Channel 0 to 5 masks 32-33 (ILC) Instruction length code
6 Mask for chanpel 6 and up 34-35 (CC) Condition code
7 (E) Extemnal mask 36 Fixed-point overflow mask
12 (C-0) Basic control mode 37 Decimal overflow mask
13 (M) Machine-check mask 38 Exponent underflow mask
14 (W-1) Wait state 39 Significance mask
15 (P-1) Problem state
PROGRAM STATUS WORD (EC Mode)
Protect’n Program
ORQO OTIE key CMWPF | 00 {CC mask 0000 0000
0 718 11j12 15[16 j18 |20 23|24 31
0000 0000 Instruction address
32 3940 47148 55{56 63
1 (R) Program event recording mask 15 (P-1) Problem state
5 (T-1) Translation mode 18-19 (CC) Condition code
6 (1) Input/output mask 20 Fized-point overflow mask
7 (E) External mask 21 Decimal overflow mask
12 (C-1) Extended control mode 22 Exponent ynderilow mask
13 (M) Machine-check mask 23 Sigmificance mask

14 (W-1) Wait state

Figure 21-6 PSW format for BC and EC modes.

Specification exception

Data exception

Fixed-point overflow exception
Fixed-point divide exception
Decimal overflow exception
Decimal divide exception
Exponent overflow exception
Exponent underflow exception
Significance exception
Floating-point divide exception

Interrupts 535
6010 Segment translation exception
0011 Page translation exception
0012 Translation specification exception
0013 Special operation exception
0640 Monitor event
0080 Program event (may be combined with another code)

Bits 34-35: Condition code. BC mode only; the condition code under EC
mode is in bits 18—-19. Comparisons and certain arithmetic instructions set
this code.

Bits 40-63: Instruction address. This area contains the address of the next
instruction to be executed. The CPU accesses the specified instruction from
main storage, decodes it in the control section, and executes it in the arith-
metic/logic section. The first 2 bits of a machine instruction indicate its
length. The CPU adds this length to the instruction address in the PSW,
which now indicates the address of the next instruction. For a branch in-
struction, the branch address may replace the PSW instruction address.

INTERRUPTS

An interrupt occurs when the supervisor has to suspend normal processing to
perform a special task. The six main classes of interrupts are as follows:

1.

Program Check Interrupt. This interrupt occurs when the computer cannot
execute an operation, such as performing arithmetic on invalid packed data.
This is the common. type of interrupt when a program terminates abnormally.
Appendix B lists the various types of program interrupts.

. Supervisor Call Interrupt. A problem program may issue a request for input/

output or to terminate processing. A transfer from the problem program to
the supervisor requires a supervisor call (SVC) operation and causes an in-
terrupt.

. External Interrupt. An external device may need attention, such as the op-

erator pressing the request key on the console or a request for communica-
tions.

. Machine Check Interrupt. The machine-checking circuits may detect a hard-

ware error, such as a byte not containing an odd number of on bits (odd
parity).

. Input/Qutput Interrupt. Completion of an /O operation making a unit avail-

able or malfunction of an I/O device (such as a disk head crash} cause this
interrupt.. ‘

. Restart Interrupt. This interrupt permits an operator or another CPU to

invoke execution of a program. :

536 Operating Systems Chap. 21

The supervisor region contains an interrupt handler for each type of interrupt.
On an interTupt, the system alters the PSW as required and stores the PSW in a
fixed storage location, where it is available to any program for testing.

The PSW discussed to this point is known as the current PSW. When an
interrupt occuss, the computer stores the current PSW and loads a new PSW that
controls the new program, usually the supervisor. The current PSW is in the
control section of the CPU, whereas the old and new PSWs are stored in main
storage, as the following indicates:

CPU Current PSW

@ (2)

F N
Main storage | Old PSWs New PSWs

The interrupt replaces the current PSW in this way. (1) It stores the current
PSW into main storage as the old PSW, and (2) it fetches a new PSW from main
storage, to become the current PSW. The old PSW now contains in its instruction
address the location following the instruction that caused the interrupt. The com-
puter stores PSWs in 12 doubleword locations in fixed storage; 6 are for old PSWs
and 6 are for new PSWs, depending on the class of interrupt: '

OLD PSW NEW PSW

Restart 0008 0000
External 0024 0088
Supervisor call 0032 0096
Program old PSW 0040 0104
Machine check 0048 0112
Input/output 0056 0120

Let’s trace the sequence of events following a supervisor interrupt. Assume
that the supervisor has stored in the six new PSWs the address of each of its interrupt
routines. (The old PSWs are not required yet.) Remember also that when an
instruction executes, the computer updates the instruction address and the condition
code in the current PSW as required.

1. A program requests input from disk. The GET or READ macro contains
a supervisor call to link to the supervisor for input/output. This is a supervisor
Interrupt.

Channels 537

2. The instruction address in the current PSW contains the address in the pro-
gram immediately following the SVC that caused the interrupt. The CPU
stores this current PSW in the old PSW for supervisor interrupt, location 32.
The new PSW for supervisor interrupt, location 96, contains supervisor state
bit = 0 and the address of the supervisor interrupt routine. The CPU moves
this new PSW to the current PSW and is now in the supervisor state.

3. The PSW instruction address contains the address of the supervisor /O rou-
tine, which now executes. The channel scheduler requests the channel for
disk input.

4. To retarn to the problem program, the supervisor loads the old PSW from
location 32 back into the current PSW. The instruction links to the PSW
instruction address, which is the address in the program following the original
SVCithat caused the interrupt. The system switches the PSW from supervisor
state back to problem state.

In the event of a program check interrupt, the computer sets its cause on
PSW bits 16—31, the program interrupt code. For example, if the problem program
attempts arithmetic on invalid data, the computer senses a data exception and
stores X'0007’ in PSW bits 16-31. The computer then stores the current PSW in
old PSW location 0040 and loads the new PSW from 0104 into the current PSW,
This PSW contains the address of the supervisor’s program check routine, which
tests the old PSW to determine what type of program check caused the interrupt.

The supervisor displays the contents of the old PSW in hexadecimal and the
cause of the program check (data exception), flushes the interrupted program, and
begins processing the next job. Suppose that the invalid operation is an MP at
location X’6A32(0°. Since MP is 6 bytes long, the instruction address in the PSW
and the one printed will be X’6A326’. You can tell from the supervisor diagnostic
message that the error is a data exception and that the invalid operation immediately
precedes the instruction at X’6A326°.

CHANNELS

A channel is a component that functions as a separate computer operated by channel
commands to control I/O devices. It directs data between devices and main storage
and permits attaching a great variety of /O devices. The more powerful the
computer model, the more channels it may support. The two types of channels
are multiplexer and selector. ;

1. Multiplexer channels are designed to support simultaneous operation of more
than one device by interleaving blocks of data. The two types of multiplexer
channels are byte-multiplexer and block-multiplexer. A byte-multiplexer
channel typically handles low-speed devices, such as printers and terminals.

538

Operating Systems Chap. 21

A block-multiplexer can support higher-speed devices, and its ability to in-
terleave blocks of data facilitates simultaneous 1/O operations.

2. Selector channels, no longer common, are designed to handle high-speed
devices, such as disk and tape drives. The channel can transfer data from
only one device at a time, a process known as burst mode.

Eachk channel has a 4-bit address coded as in the following example:

CHANNEL

0

oth bW

ADDRESS
0000

0001
0010
0011
0100
0101
0110

TYPE

byte-multiplexer

block-multiplexer
block-multiplexer
block-multiplexer
block-multiplexer
block-multiplexer
block-multiplexer

A conrrol unir, or controlier, is required to interface with a channel. A
channel is basically device-independent, wherxeas a contiol unit is device-dependent.
Thus a block-multiplexer channel can operate many type of devices, but a disk
drive control unit can operate only a disk drive. Figure 21-7 illustrates a typical
configuration of channels, conirol units, and devices.

CPU and main

storage

Channel 1

Control
unit

il
- .

,..—"""’-’—1
trol
Channel 0 C?!leﬁto Console
Control Printer
unit
Channel 2 S
Control -~ [.
unit Terminal
Terminal

Figure 21-7 Channels, control units, and devices.

Channels 539

For example, a computer uses a multipiexer channel to connect it to a printer’s
control unit. The control unit has a 4-bit address. Further, each device has a 4-
bit address and is known to the system by a physical address. The device address
is therefore a 12-bit code that specifies:

DEVICE CODE
Channel 0CCC
Control unit [91 81819
Device DDDD

If the printer’s device number is 1110 (X’E’) and it is attached to channel 0, control
unit 1, then to the system its physical address is 0000 0001 1110, or X’01E’. Further,
if two disk devices are numbered 0000 and 0001 and they are both attached to
channe] 1, control unit 9, their physical addresses are X'190° and X191, respec-
tively. This physical address permits the attaching of 28, or 256 devices.

Symbolic Assignments

Although the supervisor references I/O devices by their physical numbers, your
programs use symbolic names. You may assign a symbolic name to any device
temporarily or (more or less) permanently, and a device may have more than one
symbolic name assigned. The operating system uses certain names, known as
system logical units, that include the following:

SYSIPT The terminal, system reader, or disk device used as input for
programs

SYSRDR The terminal, system reader, or disk device used as input for
job control for the system

SYSIN The system name to assign both SYSIPT and SYSRDR to the
same terminal, system reader, or disk device

SYSLST The printer or disk used as the main output device for the
system

SYSPCH The device used as the main unit for output

SYSOUT The system name to assign both SYSLST and SYSPCH to the
same output device

SYSLNK The disk area used as input for the linkage editor

SYSLOG The console or printer used by the system to log operator
messages and job control statements

SYSRES The disk device where the operating system resides
SYSRLB The disk device for the relocatable library
SYSSLB The disk device for the system library

In addition, you may reference programmer logical units, SYS000—SY Snnn.

540 Operating Systems Chap. 21

For example, you may assign the logical address SYS025 to a disk drive with physical
address X°170°. The supervisor stores the physical and logical addresses in an
¥/O devices control table in order to relate them. A simplified table could contain

the following:
/'O DEVICE PHYSICAL ADDRESS LOGICAL UNITS
Reader xX00C SYSIPT, SYSRDR
Printer X'00E SYSLST.
Disk X170 SYSLNK, SYSRES, SYS025
drive
Tape X280 SYS031, SYS035
drive

A reference to SYSLST is to the printer, and a reference to SYSLNK, SYSRES,
or SYS025, depending on ‘its particular use, is to disk device X’170’. You may
assign a logical address permanently or temporarily and may change logical ad-
dresses from job to job. For instance, you could use an ASSGN job control
command to reassign SYS035 for a program from a disk device X’170° to another
disk device X’172°. :

IO LOGIC MODULES

Consider a program that reads a tape file named TAPEFL. The program would
require a DTFMT or DCB file definition macro to define the characteristics of the
file and tape device to generate a link to an IO logic module. The assembler
determines which particular logic module, based on (1) the kind of DTF and (2)
the specifications within the file definition, such as device number, an input or
output file, the number of buifers, and whether processing is in a workarea (WORKA)
or a buffer (IOREG). In the following example, the assembler has generated a
logic module named ITFFBCWZ (the name would vary depending on specifications

within the DTEMT).
Instructions: GET TAPEFL, TAPEREC Imperative macro
Declaratives: TAPEFL DTFMT . .. File definition macro
1JFFBCWZ
I/0 modules 1JFFBCWZ module 1/O module included by

linkage edijtor

Job control: J/ ASSGN TAPEFL, X*2871° Assign to physical address
» p

Physical 10CS 541

‘When linking & program, the linkage editor searches for addresses in the
external symbol dictionary that the assemtbler generates. For this example, the
ESD would contain entries at least for the program name and IJFFBCWZ. The
Knker accesses the named module cataloged on disk (provided it was ever cataloged)
and includes it at the end of the assembled object program. One role of a system
programmer is to define and catalog these I/O modules.

On execution of the program, the GET macro links to the specified file
definition macro, DTFMT. This macro contains the address of the I/O logic
module at the end of the object program where the linker included it. The module,
combined with information from the DTFMT, contains all the instructions nec-
essary to notify the supervisor as to the actual type of I/O operation, device, block
size, and so forth.

The only remaining information is to determine which tape device; the su-
pervisor derives it from the job control entry, which in this example assigns X281’
as the physical address. The supervisor then (at last) delivers the physical request
for input via a channel command.

For example, the printer module, PRMOD, consists of three letters (IJD)
and five option letters (abcde), as WWDabede. The options are based on the def-
initions in the DTFPR macro, as follows:

a RECFORM: FIXUNB (F), VARUNB (V), UNDEF (U)

CTLCHR: ASA (A), YES (Y), CONTROL (C)

c PRINTOV=YES and ERROPT=YES (B), PRINTOV=YES and
ERROPT not specified (Z), plus 14 other options

d IOAREAZ2: defined (I}, not defined (Z)

e WORKA: YES (W), YES and RDONLY = YES (V), neither specified
(Z)

o

A common printer module for IBM control character, two buffers, and a
workarea would be IJDFYZIW. For one buffer, the module is IDFYZZW.

PHYSICAL IOCS

Physical IOCS {PIOCS), the basic level of IOCS, provides for channel scheduling,
erTor recovery, and interrupt handling. * When using PIOCS, you write a channel
program (the channel command word) and synchronize the program with comple-
tion of the I/O operation. You must also provide for testing the command control
block for certain errors, for checking wrong-length records, for switching between
VO areas where two are used, and, if records are blocked, for blocking and de-
blocking. :

PIOCS macros include CCW, CCB, EXCP, and WAIT.

542 Operating Systems Chap. 21

Channel Command Word (CCW)

The CCW macro causes the assembler to construct an 8-byte channel command
word that defines the I/O command to be executed.

Name

Operation Operand

[labell CCuW command-code,data~address,flags,count-field

e command-code defines the operation to be performed, such as 1 = write, 2
= read, X’09° = print and space one line. '

o data-address provides the storage address of the first byte where data is to
be read or written. '

o flag bits determine the next action when the channel completes an operation
defined in a CCW. You can set flag bits to 1 to vary the channel’s operation
(explained in detail later).

e count-field provides an expression that defines the . number of bytes in the
data block that is to be processed.

Command Control Block (CCB)

You define a CCB macro for each ¥/O device that PIOCS macros reference. The
CCB comprises the first 16 bytes of most generated DTF tables. The CCB com-
municates information to PIOCS to cause required 1/0 operations and receives
status information after the operation.

Name Operation Dperand

blockname CcCB SYSnnn,command-list-ﬁame

e blockname is the symbolic name associated with the CCB, used as an old
PSW for the EXCP and WAIT macros.

* SYSnnn is the symbolic name of the I/O device associated with the CCB.
» command-list-name is the symbolic name of the first CCW used with the

CCB.
Execute Channel Program {EXCP)

The EXCP macro requests physical IOCS to start an I/O operation, and PIOCS
relates the blockname to the CCB to determine the device. When the channel

Physical 10CS 543

and the device become available, the channel program is started. Program control
then returns to your program.

Name Operation Operand
(labell EXCP blockname or (1)

The operand gives the symbolic name of the CCB macro to be referenced.
The WAIT Macro

The WAIT macro synchronizes program execution with completion of an I/O
operation, since the program normally requires its completion before it can continue
execution. (When bit 0 of byte 2 of the CCB for the file is set to 1, the WAIT is
completed and processing resumes.) For example, if you have issued an EXCP
operation to read a data block, you now WAIT for delivery of the entire block
before you can begin processing it.

Name Operation Operand
[1zbell WAIT blockname or (12

The operand gives the symbolic name of the CCB macro to be referenced.
CCW Flag Bits
You may set and use the flag bits in the CCW as follows:

Bit 32 (chain data flag), set by X'80°, specifies date chaining. When the
CCW has processed the number of bytes defined in its count field, the YO
operation does not terminate if this bit is set. The operation continues with
the next CCW in storage. You may use data chaining to read or write data
into or out of storage areas that are not necessarily adjacent.

In the following three CCWs, the first two use X’80° in the flag bits,
operand 3, to specify data chaining. An EXCP and CCB may then reference
the first CCW, and as a result, the chain of three CCWs causes the contents
of an 80-byte input record to be read into three separate areas in storage: 20
bytes in NAME, 30 bytes in ADDRESS, and 30 bytes in CITY.

DATCHAIN CCW 2,NAME,X’B0‘,20 Read 20 bytes into NAME, chain.
CCW ,ADDRESS,X’80‘,30 Read 30 bytes into ADDRESS, chain.
CCW L,CITY,X*00+,30 Read 30 bytes into CITY, terminate.

544 Operating Systems Chap. 21

¢ Bit 33 (chain command flag), set by X'40°, specifies command chaining to
enable the channel] to execute more than one CCW before terminating the
I/O operation. Each CCW applies to a separate /O record.
The following set of CCWs could provide for reading three input blocks,
each 100 bytes long:

COMCHAIN CCW 2,INAREA,X*40°,100 Read record-1 into
INAREA, chain.
cCW 2,INAREA+100,X*407,100 Read record-2 into
INAREA+100, chain.
cCl 2,INMAREA+2006,X“00°,100 Read record-3 inte
INAREA+200, terminate.

* Bit 34 (suppress length indication flag), set by X°20", is used to suppress an
error indication that occurs when the number of bytes transmitted differs from
the count in the CCW. _

o Bit 35 (skip flag), set by X’10’, is used to suppress transmission of input data.
The device actually reads the data, but the channel does not transmit the
record.

¢ Bit 36 (program controlled interrupt flag), set by X’08’, causes an interrupt
when this CCW’s operation is complete. (This is used when one supervisor
SIO instruction executes more than one CCW.)

¢ Bit 37 (indirect data address flag), as well as other features about physical
IOCS, is covered in the IBM Principles of Operation manual and the appro-
priate supervisor manual for your system.

Sample Physical IOCS Program

The program in Fig. 21-8 illustrates many of the features of physical IOCS we have
discussed. It performs the following operations:

¢ At initialization, prints three heading lines by means of command chaining
{(X°407).

* Reads input records one at a time containing salesman rame and company.

¢ Prints each record.

o Terminates on reaching end-of-file.

Note that the program defines a CCB/CCW pair for each type of record, and
the EXCP/WAIT operations reference the CCB name—INDEVIC for the reader,
OUTDEV1 for heading lines, and OUTDEV?2 for sales detail lines. Each CCB
contains the name of the /O device, SYSIPT or SYSLST, and the name of an
associated CCW: INRECD, TITLES, and DETAIL, respectively.

Physical 10CS

LOC

000000
000000

00002A
000030
000034
000032
000040

000054

000070

000078
000078
00008C

Q0000

0000D8
O0O0EQ
000DES
GOOOF0

0000F8
0000F8
00011D
00012D

00017D
coe17D
00019F
0001AD
Q0Q1BB

000202
000202
00021C
000232
000246

OBJECT CODE STMT
1

2

0530 3
4

6

10

17

21

D501 3076 3332 28
4780 305C 29
D213 32B& 3076 31
D213 32CD 308A 32
D21D 32E2 309E 33
35

39

47P0 3014 45
47

51

52

53

54

0200007820000050 65
67

68

69

70

72

8B0000D860000001 84
110000F340000085 85
1900017D40000085 86
1100020200000085 87
89

4040404040404040 90
E340D640D7404040 91
E240D440C540D540 92
94

4040404040404040 95
E340C840C5404040 96
E340C540D940D540 97
C740C840D640D540 98
100

4040404040404040 101
E2E4D9D5C1D4C540 102
C7C9ESC5D540D5C1L 103
C3D6D4D7CIDSEB40 104

.TERTIARY

SOURCE STATEMENT
PRINT NODATA ,NOGEN
PIOCSFRG START 0 INITIALIZE
BALR 3,0 *
USING *,3 *
EXCP OUTDEV1 PRINT TITLES
WAIT OUTDEV1 *
ALO0READ EXCP INDEVIC READ RECORD
WAIT INDEVIC *
CLC RECORD(2),=C'/*' END FILE?
.BE A9S0OEND YES
MVC SURNOUT,SURNAME LOAD
MVC GIVENQUT,GIVENAME * PRINT
MVC COMPOUT,COMPANY * LINE
EXCP OUTDEV2 PRINT
WAIT OUTDEV2 *
B A100READ RETURN
ASQ0END EOJ END OF JOB
*
* DECLARATIVES
*
INDEVIC CCB SYSIPT,INRECRD I/P DEVICE

INRECRD CCW

RECORD 0CL80

SURNAME DS
GIVENAME DS
COMP2ANY DS

OUTDEV1 CCB

TITLES
CCw
CCW
oCow

FRIMARY DS
DC
DC
nC
SECONDRY DS
nc
BC
DC
DC

D5
DC
DC
DC
DC

X'02* ,RECORD,X*20"',80

i/P RECORD
CL20 *
CL20 *
CL40 *
SYSLST,TITLES. O/P DEVICE

X'8B',*,X'60%,1

X*11' ,PRIMARY ,X"40',133
X'19' ,SECONDRY,X'40',133
X'11',TERTIARY,X*00' ,133

0CL133

CL37* *
CL16'T O P
CLS0O'S ME N

TITLE #1

SALE
o F

0CL133
CL34'
CL14'T H
CL14°'T E
CL71'G ¥

TITLE #2

E WEGZS
RN RE*
o N
0CL133

CL26"' *
CL21*SURNAME'
CL21 'GIVEN NAME'
CLES ' COMPANT

TITLE #3

Figure 21-8 Program: physical IOCS.

546 Operating Systems Chap. 21

loe OUTDEVZ CCB SYSLST, QUTRECRD O/FP DEVICE

000297 00
000298 030002A020000085 118 OUTRE X'09' ,DETAIL,X'20',133
000240 120 DETAIL DS OCL133 DETAIL
000240 4040404040404040 121 DC CL26"' ' * LINE
CO0ZEA 122 SURNQOUT DS CL20
Q002CE 40 123 DC CLO1*
0002CF 124 GIVENOUT DS CL20
0002E3 40 125 DC cLol* ¢
0002E4 126 COMPQUT DS CL30
000302 4040404040404040 127 DC CL35*
000328 129 LTORG ,
000328 000000CS8 130 =3 (QUTDEV1)
00032C 00000060 131 =3 (INDEVIC}
000330 00000287 132 =2 (OCUTDEV2)
000334 615C 133 =C' f**
134 END PIOCSPRG
Cutput:-

TOP SALESMEN OF

THE WESTERN REGION

SURNAME GIVEN NaME COMPANY

RUTH GEORGE HERMAN LASER CORP.
JOHNSON WALTER AMX ELECITRONICS
COLLINS EDDIE BMI

COBB TYRUS RAYMOND AUDIO SHACK
SPEAKER TRIS PACKLEIT HEWARD
SIMMONS AL VIDEO DUMP
SISLER GEORGE COMPUTER HEAP
WAGNER HANS DIGITAL CORP.

Figare 21-8 (continued)

KEY POINTS

o Systems generation (sysgen) involves tailoring the supplied operating system
to the installation’s requirements, such as the number and type of disk drives,
the number and type of terminals to be supported, the amount of process
time available to users, and the levels of security that are to prevail.

» The control program, which controls all other programs being processed,
consists of initial program load (IPL), the supervisor, and job control. Under
OS, the functions are task management, data management, and job man-
agement.

e Initial program load (IPL) is a program that the operator uses daily or when-
ever required to load the supervisor into storage. The system loader is
responsible for loading programs into main storage for execution.

¢ The supervisor resides in lower storage, beginning at location X200°. The

‘\‘/"

Chap. 21 Key Points 547

supervisor is concerned with handling interrupts for inputfoutput devices,
fetching required modules from the program library, and handling errors in
program execution.

Channels provide a path between main storage and the input/output devices
and permit overlapping of program execution with /O operations. The
channel] scheduler handies all I/O interrupts.

Storage protection prevents a problem program from erroneously moving
data into the supervisor area and destroying it.

An interrupt is a signal that informs the system to interrupt the program that
is currently executing and to transfer control to the appropriate supervisor
routine.

The source statement lbrary (SSL) catalogs as a book any program, IMAcro,
or subroutine still in source code.

The relocatable library (RL) catalogs frequently used modules that are as-
sembled but not yet ready for execution.

The core image library (CIL) contains phases in executable machine code,
ready for execution.

Multiprogramming is the concurrent execution of more than one program in
storage. An operating system that supports multiprogramming divides stor-
age into various partitions. One job in each partition may be subject to
execution at the same time, although only one program is actally executing.
The PSW is stored in the control section of the CPU to control an executing
program and to indicate its status. The two PSW modes are basic.control
(BC) mode and extended control (EC) mode.

Certain instructions such as Start I/O and Load PSW are privileged to provide
protection against users’ accessing the wrong partitions.

An interrupt occurs when the supervisor has to suspend normal processing
to perform a special task. The supervisor region contains an interrupt handler
for each type of interrupt.

A chanrel is 2 component that functions as a separate computer operated by
channe] commands to control I/O devices. It directs data between devices
and main storage and permits the attachment of a variety of 1/O devices.
The two types are multiplexer and selector.

The operating system uses certain names, known as system logical units, such
as SYSIPT, SYSLST, and SYSLOG. Programmer logical units are refer-
enced as SYS000-SYSnnn.

Physical IOCS (PIOCS), the basic level of IOCS, provides for channel sched-
uling, error recovery, and interrupt handling. When using PIOCS, you write
a channel program (the channel command word) and synchronize the program
with completion of the I/O operation.

The CCW macro causes the assembier to construct an 8-byte channel com-
mand word that defines the I/O command to be executed.

548 Operating Systems Chap. 21

PROBLEMS

21-1. What is the purpose of an operating system?
21-2. Where is the supervisor located in storage?
21-3. What is a sysgen?
21-4. What is the purpose of the supervisor transient area?
21-5. Where is the channel schednler and what is its function?
21-6. In which libraries are the following stored (a) phase; (b) module; (c) book?
21-7. What are the two main functions of the linkage editor?
21-8. Explain the role of partitions and the job scheduler.
21-9. What is dynamic address translation?
21-10. What do the first 512 bytes of main storage contain?
21-11. What are the two modes and the two states of the PSW?

21-12, Where in the PSW (the name and bit positions) is the next sequential instruction
located?

21-13. What are the classes of interrupts and their canses? ;

21-14. What is the purpose of channels? What are the two types and their differences?

21-15. A printer, number 1101, is attached to control unit 0010 and a multiplexer channel.
What is the printer’s physical address in hex?

21-16. Distinguish between physical address and logical address.

21-17. What are system logical units and programmer logical units?

21-18. Revise a simple program and substitute physical IOCS for input/cutput.

APPENDIX

HEXADECIMAL-DECIMAL
CONVERSION

This appendix provides the steps in converting between hexadecimal and decimal
formats. The first section shows how to convert hex A7B8 to decimal 42,936 and -
the second section shows how to convert 42,936 back to hex A7BS.

CONVERTING HEXADECIMAL TO DECIMAL

To convert hex number A7B8 to a decimal number, start with the leftmost hex
digit (A), continuously multiply each hex digit by 16, and accumulate the results.
Since multiplication is in decimal, convert hex digits A through F to decimal 10
through 15.

550 Hexadecimal-Decimal Conversion App. A

First digit, A (10): 10

Multiply by 16: X 16

160

Add next digit, 7: + 7

167

Multiply by 16: b 16

2672

Add next digit, B (11): + 11

2683

Multiply by 16: X 16

42,928

Add next digit, §&: + 8
Decimal value 42,936 .

You can also ase the conversion table in Fig. A-1. For hex number A7B8,
think of the rightmost digit (8) as position 1, the next digit to the left (B) as position
2, the next digit (7) as position 3, and the leftmost digit (A) as posmon 4. Refer
to the figure and locate the valoe for each hex digit:

For position 1 (8), columa 1 equals 8
For position 2 {B), column 2 equals 176
For position 3 (7), column 3 equals 1,792

For position 4 (A), column 4 equals 40,960
Decimal value: 42.936

CONVERTING DECIMAL TO HEXADECIMAL

To convert decimal number 42,936 to hexadecimal, first divide the original number
42,936 by 16; the remainder becomes the rightmost hex digit, 6. Next divide the
new quotient 2,683 by 16; the remainder, 11 = B, becomes the next hex digit to
the left. Develop the hex number from the remainders of each step of the division.
Continue in this manner until the quotient is zero.

DIVISION QUOTIENT REMAINDER HEX

42,936 + 16 2,683 8 8 (rightmost)
2,683 + 16 167 11 B

167 + 16 10 7 7

10 = 16 0 10 A (leftmost)

LSS

H H H H H H H H

e - a e e e e e

X Dec X Dec X Dec X Dec X Dec X Dec X Dec X Dec
0 0 [+] 0 0 0 0 0 0 0 0 [1] [q] [¢] 0 0
1 268,435,456 l 16,777,216 1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1
2 536,870,912 2 33,554,432 2 2,087,152 2 131,072 2 8,192 2 Bl2 2 32 2 2
3 805,306,368 3 50,331,648 3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3
4 1,073,741,824 4 67,108,864 4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680 5 20,480 51,280 5 80 5 b
6 1,610,612,736 6 100,663,296 6 6,29),456 6 393,216 6 24,576 6 1,536 6 96 6 6
7 1,879,048,192 7 117,440,512 T 7,340,032 7 458,752 T 28,672 7 1,792 7 112 7 7
8 2,147,483,648 8 134,217,728 8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8
9 2,415,919,104 9 150,994,944 9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 2,952,790,016 B 184,549,376 B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11
C 3,221,225,472 C 201,326,592 ¢ 12,582,912 C 786,432 C 49,152 ¢ 3,072 c 192 C 12
D 3,48%,660,928 D 218,103,808 D 13,631,488 D B51,968 D 53,248 D 3,328 p 208 D 13
E 3,758,096,304 B 234,881,024 E 14,680,064 B 917,504 E 57,344 E 3,584 B 224 E 14
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040 F 61,440 F 3,840 F 240 F 15

] 7 ["5 4 3 2 1
Figure A-1

552 Hexadecimal-Decimal Conversion App. A

You can also use Fig. A-1 to convert decimal to hexadecimal. For decimal
number 42,936, locate the number that is equal or next smaller. Note the equiv-
alent hex number and its position in the table. Subtract the decimal value of that
hex digit from 42,936, and locate the difference in the table. The procedure works
as follows:

DECIMAL HEX

Starting decimal value: 42,936

Subtract next smaller number: —-40960 = "AQ00
Difference: 1,976

Subtract next smaller number: - 1,792 = 700
Difference: 184 ;
Subtract next smaller number: - 176 = BO
Difference: 8§ = 8

Final hex number: A7TB8

APPENDIX

PROGRAM
INTERRUPTS

A program interrupt occurs when a program attempts an operation that requires
special attention. These are the program interrupts, listed by hex code number.

1. Operation Exception

The CPU has attempted to execute an invalid machine operation, such as hex-
adecimal zeros. Possible causes: (a) missing branch instruction, and the program
has entered a declarative area; (b) the instruction, such as a floating-point oper-
ation, is not installed on the computer; (¢) during assembly, an invalid instruction
has caused the assembler to generate hexadecimal zeros in place of the machine
code. For a 6-byte instruction, such as MVCwith an invalid operand, the assembler
generates 6 bytes of hex zeros. At execute time, the computer tries to execute
the zero operation code, causing an operation exception. (Since the computer
attempts to execute 2 bytes at a time, the system may generate three consecutive
operation exceptions.) See also the causes for an addressing exception.

2. Privileged-Operation Exception

An attempt has been made to execute a privileged instraction that only the su-
pervisor is permitted to execute. Possible causes: See operation (1) and addressing

553

554 Program Interrupts App. B

(5) exceptions. Since there are many causes, it may be necessary to take a hex-
adecimal dump of the program to determine the contents of I/O areas and other
declaratives to discover at what point during execution the error occurred.

3. Execute Exception
An attempt has been made to use the EX instruction on another EX instruction.
4. Protection Exception

A storage protection device prevents programs from erroneously moving data into
the supervisor area or other partitions. Such attempts {for example, by MVC and
ZAP) cause the computer to signal the error. Possible causes: (a) the program
has erroneously loaded data into one of its base registers; (b) improper explicit
use of a base register.

5. Addressing Exception

The program is attempting to reference an address that is outside available storage.
Possible causes: (a) a branch to an address in a register containing an invalid value;
(b) an instruction, such as MVC, has erroneously moved a data field into program
instructions; (c) improper use of a base register, for example, loaded with a wrong
value; (d) a BR instruction has branched to an address in a register and the wrong
register was coded or its contents were changed.

6. Specification Exception

The program has violated a rule of an instruction. (a) For any type of operation,
an attempt has beer made to execute or branch to an instruction that does not
begin on an even storage address (possibly an incorrect base register). (b) For
packed operations DP and MP, a multiplier or divisor exceeds 8 bytes, or the length
of the operand 1 field is less than or equal to that of operand 2. {(c) For binary
operations D, DR, M, MR, SLDA, SLDL, SRDA, and SRDL, the instruction
does not reference an even-numbered register. (d) A floating-point operation
does not reference register 0, 2, 4, or 6, or an extended-precision instruction does
not reference a proper pair of registers, 0 and 2 or 4 and 6. (e) CLCL or MVCL
does not reference an even-numbered register.

7. Data Exception
Axn attempt has been made to perform arithmetic on an invalid packed field. (a)

For AP, CP, CVB, DP, ED, EDMK, MP, SP, SRP, or ZAP, the digit or sign
positions contain invalid data. Possible causes: An input field contains blanks or

:‘\\ k_/

App.B Program interrupts 555

other nondigits that pack invalidly; failure to pack, or an improper pack; an AP
has added to an accumulator that was not initialized with valid packed data; im-
proper use of relative addressing; an MVC has erroncously destroyed a packed
field; improper explicit use of a base register. (b) The muitiplicand field for an
MP istooshort. (c) The operation fields for AP, CP, DP, MP, SP, or ZAP overlap
impropeily due to incorrect use of relative addressing.

8. Fixed-Point Overflow Exception
A binary operation (A, AH, AR, LCR, LPR, §, SH, SR, SLA, or SLDA) has
caused the contents of a register to overflow, losing a leftmost significant digit.

The maximum value that a register can contaip is, in decimal notation,
+2,147,483,647.

9. Fixed-Point Divide Exception
A binary divide (D or DR) or a CVB has generated a value that has exceeded the
capacity of a register. A common cause for divide operations is dividing by a zero

value. The maximum value that a register can contain is, in decimal notation, *:
+2,147,483,647.

A. Decimal-Overflow Exception

The result of a decimal packed operation {AP, SP, SRP, or ZAP) is too large for
the receiving field. Solution: Redefine the receiving field so that it can contain
the largest possible value, or perform a right shift to reduce the size of the value.
B. Decimal-Divide Exception

The generated quotient/remainder for a DP operation is too large for the defined
area. Possible causes: (a) failure to follow the rules of DP; (b) the divisor contains

a zero value.

C. Exponent-Overflow Exception

A floating-point arithmetic operation has cansed an exponent to overflow (exceed
+63).

D. Exponent-Underflow Exception

A floating-point arithmetic operation has caused an exponent to underflow (less
than —64).

556 Program Interrupts App. B
E. Significance Exception

A floating-point add or subtract has caused a zero fraction. All significant digits
are lost, and subsequent computations may be meaningless.

F. Floating-Point Divide Exception
A floating-point operation has attempted a division using a zero divisor.

In each case, the system issues an error message, giving the type of program
interrupt and the address where the interrupt occurred. Sometimes an error causes
a program to enter a declarative area or another invalid area outside the program.
(The computer may even find a valid machine code there.) In debugging, deter-
mine how the program arrived at the invalid address. In many cases, a dump of
the program’s registers and storage area is essential in tracing the cause of the
EFTOr.

Another common error, though not a program interrupt, is generated by the
operating system: INVALID STATEMENT. The system is attempting to read
an invalid job control command. A common cause is a program that has terminated
before reading all its data in the job stream, and the system is trying to read its
remaining data records as job commands. Possible causes are (a) missing branch
instructions causing the program inadvertently to enter its end-of-file routine; (b)
branching to the end-of-file routine on an error condition without flushing re-
maining records in the job stream.

APPENDIX

ASSEMBLER
INSTRUCTION SET

MACHINE INSTRUCTIONS

;
'

[+]

B ERREeqenIgRzRaRERERzIIRzIY>
EEEEREEREL 83335683285?‘:36853&822%

*5gB3°% 33
F

PR3 44 ¢
2300823 2R3 BLBRIRAUARIVRRRINIRINLRIRIRGRARG

DPERANDS
R1,R?
R1,D2(%2,82}
D1{L1,B1}.02(L2,82)
A1,02(x2.82)
R1,R2
R1,D20%2,92)
R1,R2
R1,02{X2.82)
D1{B1).12
DIILET),D2{82}

L.R2

R1,R3,D2(B2}
O1{L1,B11,02{L.2.82)
R1,R3,02(82)
R1,D2{X2.82)

R1LRA2

R1,D2(X2,82)
DI(LB1),02(82}
o1H{BILI2

F1 W3, D2{82)

RLR2
R1,D2(x2,82)
R1,02{X2.82}

R1,R2

R1,02(X2,82)
DI{L1,BILD21L2.82
DHLB1),D2(82)

DL B1LD2(B2)
/1LR2

R1,02(x2,62)

MACHINE INSTRUCTIONS (Contd)

NAME IMENGIC
Exchusive OR () xx
Exclusive OR (c} xc
Execute £X
Halt 1/0 (c.p) HIO
Hale Dawvice {c.n) HOV
1nsert Charactar iC
Inert Charycrars ynder Mask (c} 1CM
Insert PSW Key i9) iy 4
Insart Stormge Kay (p) ISK
toad R
Load L
Load Address LA
Load and Test (e} LTR
Load Complemant {c) LCR
Load Controt {p) LCTL
Lo3d Helfword LH

Myitiple LM
Losd Hegative (5} LR
Loud Powtive (c} LPR
Load PSW (a0} LPSW
Losd Rewl Addmss LoD} LRA
Monitor Calt mMC
Move MVl
Mervw MyC
Move f,ony () MVCL
Move Numerics. MVN
Move with Ofbet MVOD
Move Zones wVZ
Muluply MR
Multiply . L
Multiply Decimal e
Maltiply Hatfword MH
oR e} OR
OR {c) o
OR (c} [+]
OR (] Qc
Ppck PACK
Purge TLE () PTLE
Read Dirsct {p} RDOD
Reswr Reforerce Bit (o p} RAB
Set Clock {c.p) SCK
Set Clock Comperstor {p) SCKC

16

gggagasaa

arteanct
Di{e 2
LB, D2(BN
R1,D202.80
D2(B2}
D2(B82)
R1,020x2 82}
RI,M3,02(62)

R1 A2

R1,02062,52)
DIEN, 2

B2
D1(L.B1),02iB2)
R1.RZ

DrLen. D22
01{1.1.81).02012.82)
D1(LB1),D2(B2)
A1R2
R1,02(x2,82}
D1(L1,81).02(L2.82)
A1,020x2,82)
RIRZ
R1.DZ(X2,82
sz
DI(L.B1.,DHED
DU BN.D2LZED

Due 2
D2e2
rril-viy
D2B2}

557

558 Assembler Instruction Set App. C

MACHINE INSTRUCTIONS (Contd) — Floating-Point Instructions (Contd) o om
v WRMORC CODE WAT DPERANOS A WRENOME (DO MAT OPERANDS
Set CPLS Tomer 0y SPT 8208 S5 D2i62) Load, Long LD 68 RX R1,D2({X2,H2}
Set Prefix ip) SPX B210 S DzIe2) Load Negetive, Long fc) LNDR 21 AR RLR2
Sat Program Mmk (n) SPM 04 RR R Lond Negutive, Short {e) INER 3 AR ARAILARZ
Set PSW Kay from Addmss p) SPKA BXA S D2(8 Load Positive, Loag {c} PR 20 AR R1R2
Set Sworage Key (D) SsSK 3 RR RiR2 Load Positive, Short {c) LPER 0 AR R1,R2
Sat Sysoem Mask (p) SSM 8 S D2(8 Load Rounded, Exwnded to Long {x) LROR 25 AR RIRZ
Shift and Round Decinai {c) SRP FO S5 DILLENDAB2) M2 Load Rounded, Lony t Short (x) LRER 35 RR R1LAZ
Shift Latr Double (c) SLDA BF RS Rt D2B2) Load, Short LER 38 RR R1R2
Shift Laty Double Logcat SLDL 8D RS Rt,02(B2) Load, Short LE 7B RX R1.D2X2.E2}
Shift Lafr Single (c} SLA 88 RS R1D2(B2) Muinply, Exeendad (x} MXR 26 RR R1R2
Shift Lefr Single Logical SLL 289 RS RLD2ABY Muluply, Long MDR 26 RR RLR2
Shift Right Double {c) SADA 8E RS A10282) Muluply, Long MD 6 RX R1,D2(X2,82}
Shift Right Doubie Logical SROL 8C RS R1),b2AB2) Multiply. Long/Exmnded {x} MXDR 27 RR R1LR2
Shift Right Single {c) SARA 8A RS R1.O2B2) Multiply, L ong/Extended {x} MXD 67 RX R1,D2X282)
Shift Right Single Logicat SRL. 88 RS R1.D2iB2) Melsiply, Shoet MER 3C RR RI1R2
Signal Processar {c.p} SIGP AE RS R1,R3D2(82) Multiply, Short ME 7€ RX R10HXZB2
Sart 10 (¢.0) S50 a0 S D2AB2) Store, Long STD 60 RX RLD2{X2.82)
Seprt 170 Fast fiatorse lc.p) SIOF 9001 S DABD) Store, Short STE M RX 020282}
Store ST 50 RX RLDAX2.8X) Subd L Wired, E ded [cx} SXR k1 RR R1LR2
Seove Channel 1D (c.p) STIDC B2 S D2{B2) Scbteact Normalized, Long {c) SOR 28 RR RLR2
Store Charpcter 5TC 42 RX RLO20C2E2 Scbtract Normalized, Long k) SD 68 RX R1,D2AX2B2}
Store Characrers under MMak STCM BE RS R1LMD2(82) Subtract Normatized, Short {c) SER 38 RR RILR2
Store Clack (&} STCK B2S S DB Sulbtract Normalized, Short (c) SE 78 RX RIDAHX2H2)
Store Clock Comparstor (p} STCXC B27 S D218 Subtract Unnoemalized, 1] SWR 2 RR RLA2
Store {n} SICTL B RS RLARID2BY Subtract Uninormalized, Long {c) sw 6F RX HIDAUX2ED)
Stors CPU Address (p) STAP B2 S o208 Subrract Unnoemalized, Short (¢} SUR 3F RR RLA2
Storw CPU ID {p) SNIpP B2 S OHEY Sciract Unnoealited, Short (e} su F RX RLD2AX2.82)
Srore CPU Tomer (p) BXY S D218
Store Hattword STH 40 X R1,D2AX2.82) - — -
Store Multiple STM 90 RS R1LR3D2(B2) €. Condition code is 1. p. Priviieged nstruction, .
Stove Prefix (p) STPX B2I1 S 2B n. New condition code is loaded. x E ded p H G-POWIL,
Srore Ther AND Syxtorny STNSM AC 51 DB 12
Mask {p} .
Srom m‘:)onsmm {p} STOSM AD S gl(:;uz EXTENDED MNEMONIC INSTRUCTIONST
Sobtract SR 12 RR 1, - . -
Sobtract () . s S8 RX ALD2AX2E2) s pravpuriany _ puvgironds
Subtract Decimal [c) sp FB S5 DIIL1B1LD2IL2B2) o Meacing
Subtract Haslfword (c} sH 48 RX R1O2AX282) Geoaral Borgh Unconditional Branch BC or BCR 15,
Suberact Logical (c} SLR 1F RR R1,R2 NOP or NOFR No Operation BCorBCR O,
Subtract Logical (c} SL SF RX #1,02(X2,82)} Afvr BH or BNR Branch on A High BC o BCR 2,
Supervisor Call SVC 0A BR | Compare BLorBLR Branch on A Low BC or BCR 4,
Test and Sac {c} Ts 92 S 0280 Instructions BEor BER Brapch on A Equal B BCorBCH B,
Tt Channed {c.p} TCH 9F00 S D28 Az8) BNH or BNHR Branch on A Not High BC or BCR 13,
Tetx 1O {cp} o SDO0 5 D2(67 BNL or BNLR Branch on A Not Low BCaor BCH 11,
Test under Mask {c} ™ 91 st DB BNE or BNER Branchon ANotEaual B BCorBCR 7,
Transtate TR DC S5 DtiLB1),02i82) Aftor Branch on Cverflow BCorBCR 1,
Transtate and Test (c) TAT BD 55 DNLS)D2AB e i pooraen Branch on Pies BCor BCR 2,
UNPK F3 55 DHLABNOALZED ypuuctiom BMorBMA Branch on Mima BCor BCR 4,
Write Dirnct {p) WRD 84 S DHBILI2 BNP or BNPR Branch on Not Plus BCer BCA 13,
Zero and Add Decimal (c) ZAP F8 S5 DIILT,BN.D2L2ED BNM or BNMR Begach on Not Mimes BT or BCR 11,
BNZ or BNZIR Beanch on Not Zeo BCorBCR 7,
Floating-Point Imtructions BZ or BZR Branch on Zero BCor BCR 8,
or FOR Atter Test BO or SOR Branch if Onex BCor BCR 1,
AT rm;& tedt 2] . X RE mpe under Mask BM or BMR Branch if Mixsd BCor BCA 4,
y Instruction BZ or BZR Branch if Zeos BCorBCR 8,
Add Normalized, Long (c} ADR 2A KRR RLR2 BNO or BNOR Branch it Not Ones BC or BCR 14,
Add Normalized, Long (¢} AD SA RX R1D20X2B2 -
Normalized, Short {c) AER 3A RR mMA2 *Second opaeand not Shown: bn alt cases it is TFor O5/VS and DOS/VS:
Add Normalized, Short {c) AE 7A RX RLD2X28D) D2{x2,B2) for RX format or R2 for RR tormat. source: GCII-4020.
Add Unnormradized, Loog) AWR 2E RR RLR2
pusbrinsciorsugakd e S B Mipx2E) EpIT AND EDMK PATTERN CHARACTERS fin hex)
Adid Unnormslized, Short {c) AU 7€ RX R1,D2UX282) 20—digit selector £0—blank SC—asterisk
Compae, Loog {c) COR 23 RA RILA2 21=5tavt of significance SB—period EB—comma
Compars, Long (<) co €9 RX RL,02(X2,82) 22--Fald separates SB=—dollar sign C303-CR
A e} CER 39 RR RiLR2
Compare, Short () CE 79 RX RL02(X2.82
Divide, Long DDR 20 RR HR1R2
Divide, Long Do 60 Rx R1L02X2E) ?ﬂﬂgﬂfgf o 1 2 3
Divide, Short DER 30 AR HRALA2 Mask Bit Value 8 . 2 1
Evicle, Short DE 70 RX R1LD20X2H2) .
Halve, Long HDR 24 AR RILR2 Gonaral |entructions
Halve, Short HER 34 RR RiIR2 Add, Add Halbword =ro <rero 00 overtiow
Loed and Test, Long [c} LTOR 22 AR R1LA2 Add Logical o1, not Iero, w0, not 2ev0,
toed and Test, Short {c} LTER 32 RR RiLA2 no canry no My cary carry
Load Complement, Long (o) LCOR 23 RR RLR2 AND Tero not 2ero - -
Load Complament, Short {c) LWCER 33 RR RLR2 Compare, Compare Halfword equat iszoplow istophigh -
Load, Long LDR 28 RR RLR2 Compare and Seap/Doubls equat not wqusl - -

3:; gy B’% 80 -
¥ ¥o L ¥e -
R REETCRETRECRETVCE EYCRETI -
QUOMIIVH | OHOMITWH QUOMITTH AHOMITYH -
auom THOM -
QYOMITBN0a :

INIWNDITY JOND moiuaso
MOLLIAD
MDY
4800 100 Aang pRacTs ITT pRdane 209MBI0N pELBIC -
i 30U - warat F=] WI0L) 1S -

1=37imH =D lsd =D 0wy 0= 0=H pL: | oY) sacay v

LOUEOM e Pl bl
phu Anue 14 Anus 15 ey PRy W peay -
RIS | [0 A o
Jado 300 Aanq PeICIS MED sqepase Ofnuag -
Suspued . Aues
J000 10U BP0 IS LONCRLM Rty uuey) 1y QU JOu
scio 10u Mg pRON MS) PRRITQY Qe g MOLO
;do 10u A PRI MG NySERONE J0IS "Oft vms eda J0d
peddint Saupued’ -
ME0ION dOIEKW PRGKE MST LoadnIae O/l Moo
Eunyaom Bupuad -~
#0010 g PO MSD ORI wagyey SO
+aboxs MO
Mdolou AhQUED PAKIS MSD 4 Jedo ou Off e -
UGN SN Iy '"‘“:
- LT ouT. onz PATHEILLOUUNY TILGNS -
- cuags QIR el PATHRULLON 2E00NS -
- L - onz W04 PO -
(RuUcd} SIA0I NOILIONDD
659

198 UOIIDNIISY] IB[qQUIASSY

§
i

$
HI I

p

AL ARk

O 10 153

Wit Coxp

=0 Bq I8y

Moy do sy

sapeben; peoy

2L pom pedy

Sawcurry
PEIRLLIGRN] PRy
PEDRULON PERT
mlm
PRV pUR 02

woeg) eqgRs
BUCeq) PUNOY Ut S
e pUR P Up3

R Mo

¢
IR

1!

i
y
Hi

(Rwo)} SICCI NOLLIONDD

D ~ddy

APPENDIX

DOS AND OS
JOB CONTROL

This appendix provides some typical examples of job control under DOS and OS.

DOS JOB CONTROL

Here is an example of conventionai job control to assemble and execute a program

under DOS:

// JOB jobname
// OPTION DUMP,LIST,LDG,XREF

ACTION MAP

560

Jobname may be 1-8 characters.
DUMP: Print contents of storage on
abnormal execute error (or
NODUMP).
LIST: List the assembled program {or
NOLIST).
LOG: Print the job control statements
(or NOLOG).
XREF: Print a cross-reference of sym-
bolic names after the assembly
(or NOXREF).
Print a map of the link-edited program
(or NOMAP).

DOS Job Control 561

/7 EXEC ASSEMBLY . Load assembler and begin assembly.
... (source program here)

/x End of assembly.

// EXEC LNKEDT Perform link edit.

// EXEC Load linked module into storage; begin

execution.

... {input data here)

/x End of input data.

/% End of job; return to supervisor.

Larger DOS systems provide for cataloging commonly used job control on
disk in the procedure library. The preceding example of job control could be
cataloged, for example, to provide for automatic assembly, link edit, and executé
through the use of only a few job commands, as follows:

* $$ JDB jobname Jobname may be 1-8 characters.

// EXEC PRDC=ASSEMBLY Cataloged procedure ASSEMBLY con-
tains assembly, Enk-edit, and exectite job
commands.

... (source program here)

/% End of assembly.
... (input data here)

/= . End of input data.

/& Exnd of job.

+ $3 EOJ

DOS Job Control for Magnetic Tape

The job commands for magnetic tape are similar to those for the system reader
and printer. However, tape files require additional information on a TLBL job
command to provide greater control over the file.

// TLBLfilename,‘file—ID',date,file-sefial-no.,volume—sequence
no.,file-segquence-no.,generation-no.,version-no.

filename Name of the DTFMT, the only required entry.

file-1D’ The file identifier in the file label, 1-17 char-
acters. :

retention date One of two formats for output files: (1) yy/

ddd, the date of retention; e.g., 95/030 tells
the system to retain the file until Jan. 30, 1995;
(2) dddd, a retention period in days.

file serial number 1-6 characters, the volume serial number for
the first or only volume of the file.

DOS and 0S Job Control App. D

volume sequence number 1-4 digits for the voilume number in a multi-
volume file.
file sequence number 1-4 digits for the file number in a multifile
: volume.
generation number 1—4 digits for the generation number.

version number

1-2 digits for the version number.

If you omit any of the last four entries, the system assumes 1 if output and ignores

if input.

DOS Job Control for Direct Access Storage Devices

Each extent (disk area) for 2 disk file requires two job control commands, DLBL
and EXTENT, equivalent to the magnetic tape TLBL job command. Note that
you may store a file on more than one extent. DLBL and EXTENT follow the
LNKEDT command, coded as follows:

/7 EXEC LNKEDT
// DLBL filename...
// EXTENT symbolic-unit...

Here are details for the DLBL and EXTENT commands:

// DLBL filename,“file-ID’,date,codes

filename
"file-ID’

retention date

codes

Name of the DTFSD, 1-7 characters.

1-44 characters, between apostrophes. This is the first
field of the format 1 label. You can code the file ID and
optionally generation and version number. If you omit
this entry, the system uses the filename.

One of two formats for output: (1) dddd = retention
period in days; (2) yy/ddd = date of retention; e.g., 95/
(30 means retain file until January 30, 1995. If you omit
this entry, the system assumes 7 days.

Type of file label: SD is sequential disk; ISC is index
sequential create; ISE is index sequential exiend; DA is

direct access. If you omit this entry, the system assumes
SD.

/7 EXTENT symbol&c-unit,serial—no.,type,sequence-no.,rglative-
track,number-of-tracks,split-cylinder-track

symbolic unit

The symbolic unit SYSnnn for the file. If you omit
this entry, the system assumes the unit from the pre-
ceding EXTENT, if any.

0S Job Control

serial number

type

sequence number

relative track

number of tracks

split cylinder track

0S JOB CONTROL

563

The volume serial number for the volume. I you
omit this entry, the system uses the number from the
preceding EXTENT, if any.

The type of extent, wkere 1 is data area with no spht
cylinder; 2 is independent overflow area for IS; 4 is
index area for IS; 8 is data area, split cylinder. If
omitted, the system assumes type 1.

Thke sequence number (0—255) of this extent in a mul-
tiextent file. Not required for SD and DA, but if
used, the extent begins with 0. For IS with a master
index, the number begins with 0; otherwise IS files
begin with extent 1.

1~5 digits to indicate the sequential track number,
relative to 0, where the extent begins. The formula
to calculate the relative track is

RT = tracks per cylinder x cylinder number
+ track numbey

Example for a 3350 (30 tracks/cylinder), on cylinder
3, track 4:

RT = (30 x3)+4=094
1-5 digits to indicate the number of tracks allocated

for the file on this extent.

Digits (—19 to signify the upper track number for split
cylinders in SD files. (There may be more than one
SD file within a cylinder.)

There are different versions of OS job control language. The following illustrates
one version, providing for assembly, link edit, and execution of test data. The
program uses the system reader and a printer file, both of which require 2 DD
{data definition) job command.

//jobname JGB [optional accounts,accig-information,programmer-namel

//stepname EXEC ASM?C.G

Use ASMG to assemble, with no execute.

Level of assembler, e.g., F or G.

Compile (assemble)d.

//ASM.SYSIN DD =

Link-edit the assembled program.

Go, or execute the linked program.

The * means that the source program
immediately follows in the job stream.

3

564 DOS and 0S Job Control App.D

..-(source program here)

End of assembly.

//GO.SYSUDUMP DD SYSBUT=A Causes printing of execution error

diagnostics.

//G0.printername DD SYSOUT=A Data definition for printer in program

DCB. (A is class of output for printer.)

f/G0.readername DD = Data definition for system reader. (»

s
/7

indicates that input datas immediately follews.)

...Cinput data here)d

End of input data.
Optional entry for end of job.

Descriptions of the OS EXEC and DD commands follow. As a convention:

e Braces { } indicate a choice of one entry.

» Brackets [] indicate an optional entry from which you may choose one entry
OF none.

o Parentheses (), where they appear, must be coded.

The 0S EXEC Command

The general format for the OS EXEC command is the following:

PGM=programname
PGM=+*.stepname.ddname

//lstepnamel] EXEC PGM=+%.stepname.procstepname.ddname
[PROC=]lprocedure-name
{other cptions)

Other options for EXEC include ACCT (accounting information}, COND,
DPRTY (for MVT), PARM (parameter), RD (restart definition), REGION (for
MVT), ROLL (for MVT), ard TIME (to assign CPU time limit for a step).

ACCTI.procstepnamel=(accounting information)

(code,operator?
COND[.procstepnamel= | {(code,operator,stepname)
(code,operator,stepname,procstepname)

DPRTYL.procstepnamel=Cvaluel,value2)
PARMIL .procstepnamel=value
RDl.procstepnamel=R or RNC or NC or NR

REGIONI .procstepnamel=(valueKl[,valuelKl)

0S Job Control 565

: YES -YES
ROLLL.procstepnamel=
ND s ND

TIMEL .procstepnamel=C(mins,secs)

The 0S DD Command

The DD (data definition) command defines the name and property of each device
that the program requires. Its general format is the following:

/ /ddname DD operand '
procstepname.ddname

The operand for DD permits a variety of options, as follows:

*] Define a data set in the
| DATA input stream.
bBCB=(attributes)

DCB=(dsnamel ,atiributesi) Completion of data
DCB=(+.ddnamel,attributes]) control block.
DCB=(+.s5tepname.ddnamel ,attributes])

DCB=(+.stepname.procstiep.ddnamel ,attributesl)

{DDNAME=ddname]l Postpones definition of

ithe data set.

NEWT][,DELETE [,DELETE fissigns status,
oLD)| ,KEEP ,KEEP ~disposition, and
DIsP=f [SHR |} ,PRSS .CATLG conditional dispesition
MOD 1| ,CATLG »UNCATLG of the data set.
| ,UNCATLG
[~ (‘dsname 3 7]
dsname{areaname)
dsname{membername)
dsname{generation#) Abbreviated as DSHN.
DSNAME=< &&dsname - Assign name to new or
t&dsname(areaname) existing data setl.
t&dsname(membername)
* ,ddname
* . siepname.ddname
» | *.stepname.procstepname.ddname } _|
FCB=(image-id [,nuen])] ' Forms control for 3211
| .VERIFY

printer.

566 DOS and OS Job Control App.D

[LABEL=C([data set seq#)[parametersl) [Label information (see
below).

[SPACE=(parametiers)] fillocate space on disk
for a new data set (see
below).

[SYSDUT=(classnamel ,programnamell ,form#1)[BUTLIM=n0.13
Route a data set through
the output job siream.

[UNIT=(parameters)] Unit information.

[VOLUME=(parameters)] Alsco VOL. Provide
information -about the
volume (see below)d.

The following describes in detail the parameters for LABEL, UNIT, and
VOLUME.

S AL ,PASSWORD |{ ,IN EXPDT=yymmdd
LABEL=] [dataset seq#l| ,AUL [,3
,NSL [{ , NOPWREAD | ,0UT, RETPD=nnnn

y WL
;BLP

TRK .primary} ,secondary|| ,directory ,RLSE || ,CONTIG | ,RBUND]
SPACE={ {€YL] » ,index N ,MXIG

blecksize SALX

SPACE={ABSTR.,{primary qty, address| ,directory
: »index

unit-address || ,count
UNIT=| | device-type ,P [,DEFERI(,SEP=Cddnamel, ...>1

group-name ¥

UNIT=AFF=ddname

Cor VOLY REF=dsname
REF=#.ddname

7 ?

VOLUME = ([PRIVATEJ[,R'Emn][,vo_lseq:]t ,volcountll, I[SER=5eriall, . D

*EXPDT is expiration date and RETPP is retention period.

0OS Job Control

567

For REF, other entries are

REF=#%.5tepname.ddname
REF=#.s5tepname.procstepname.ddname

Other DD operands include these:

BUMMY

DYHamM
AFF=ddname
QUTLIM=number

SPLiT=operand
SUBALLOC=cperand

TERM=TS

Bypass I/O on a data set under BSAM and QSAM.
Request dynamic aflocation under MVT with TSO.
Request channel separation.

Limit the number of Jogical records to be included
in an output data set.

Assign space for a new data set on a disk device
and to share cylinders.

Request part of the space on a disk device that the
job assigned earlier.

Inform the system that data is tramsferring to or
from a timesharing terminal.

APPENDIX

SPECIAL MACROS:
INIT, PUTPR, .
DEFIN, DEFPR, EOJ

568

This appendix describes the special macros INIT, PUTPR, DEFIN, DEFPR, and
EOJ used at the beginning of this text to handle program initialization and input/
output. The macros are simple to implement and to use, and anyone is free to
catalog them. Beginners often have trouble coding the regular full macros, making
punctuation and spelling errors and omitting entries. The use of macros such as
the ones in this appendix can avert a lot of initial coding errors and can free
beginners to concentrate on programming logic.

The INIT macro, which is used for initializing base register addressing, re-
quires versions for both DOS and OS, shown in Figs. E-1 and E-2, respectively.
A further recommended refinement could include the DOS STXIT or OS SPIE
macro for error recovery.

MACRO
&INITZE INIT
&INITZE BALR 3.0 LOAD BASE REGISTER 3
USING *,3.,4,5 ASSIGN BASE REGS 3,4 & 5
LA 5,2048 LOAD X'800' (1/2 OF ¥'1000')
La 4,2048(3,5) LOAD BASE REG 4
La 5,2048(4.,5) LOAD BASE REG 5
MEND

Figure E-1 The DOS INTT macro.

App. E

Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ

MACRO
SINITZE INIT
SINITZE SAVE {14,12) SAVE REGS FOR SUPERVISOR
BALR 3,0
USING 3,4,5
sT 13,S5AVEAREA+‘4 SAVE ADDRESSES FOR RETURN
LA 13,SAVEAREA TO SUPERVISOR
LA 5,2048 LOAD X'800' (1/2 OF X'1000')
LA 4,2048(3,5} LOAD BASE REG 4
LA 5,2048(4,5) LOAD BASE REG 5
B SAVEAREA+18%4
SPACE ,
SAVEARER DS 18F SAVE AREA FOR INTEREUPTS
MEND
Figure E-2 The OS INIT macro.
MACRO
EWRITE PUTPR &FILE,&PRAREA,&CTLCHR
LCLC &CTL
o
L.VALAREA ATF ('&CTLCHR' NE 'WSP1l').NEXT1 PRINT & SPACE 17
&CTL SETC 'X''09''*
AGO .NEXT9
X
.NEXT1 AIF (’'&CTLCHR' NE 'WSP2').NEXTZ PRINT & SPACE 2°?
SCTL SETC ‘'X*‘'li*‘!
AGO .NEXT9
E
.NEXT2z AXIF ('&CTLCHR' NE 'WSP3').NEXT3 PRINT & SPACE 3?
&CTL SETC ‘X*''l19°*''*
AGO .NEXT9
.*
NEXT3 ATIF (*&CTLCHR' NE 'SPl1').NEXT4 SPACE 1, NO PRINT?
&CTL SETC *X''0B'*!
AGD .NEXTS
.*
-NEXT4 ATF (*&CTLCHR* NE *'SP2').NEXTS SPACE 2, RO PRINT?
&CTL SETC *X‘''13''"
AGO .NEXTS¢
. X
.NEXT5 AIF ('&CTLCHR®' NE 'SP3').NEXT6 SPACE 3, NO PRINT?
&CTL SETC 'X'*1B'‘!'
AGD .NEXT9
oK
.NEXT6 AIF ({'&CTLCHR' NE °*SK1').NBEXT7 SKIP TO NEW PAGE?
&CTL SETC 'X'*s8B''!
AGO .NEXT9
.
<NEXT7 AIF ({'&CTLCHR' NE °*‘WSP0').NEXT8 PRINT & SPACE 07
&CTL SETC ‘'X"'01°''®
AGO .NEXTY
WK
.NEXT3 MNOTE 1,'INVALID PRINT CONTROL - DEFAULT TO WSPl'
&CTL SETC 'X''Qg'"!
X
NEXT9 AaNOP
SWRITE MVI &PRARERA,&CTL MOVE CTL CHAR TO PRINT
PUT &FILE,SPRAREA * & PRINT
-NEXT10 ANOP
MEND
Figure E-3 The PUTPR macro.

570 Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ App. E

The PUTPR macro, shown in Fig. E-3, generates two instructions, of the
form:

MVI PRINT,X’ nn” Insert control character
PUT PRTR,PRINT Print line

If the control character is invalid, the macro instruction defaults to write and space
one line.

The DEFIN macro defines the system reader and assume the use of a workarea
for input. (That is, you code GET filename,workarea.) The macro usefully
checks the validity of the supplied end-of-file address. The DOS version, shown
in Fig. E4, generates a DTFCD, whereas the OS version, shown in Fig. E-5,
generates a DCB. The particular entries may vary by installation.

MACRO

&FILEIN DEFIN &EQF
aAIF (T'&ECF EQ *I' OR T'&EQF EQ 'M').Al0 EOQOF ADDRESS VALID?
MNOTE 1, 'EOF ADDRESS NOT DEFINED' NO -

SEOF CLOSE &FILEIN * GENERATE EOF ROUTINE
EOJ
.A10 ANOP
&FILEIN DTFCD BLKSIZE=80, DEFINE INPUT FILE +
DEVADDR=SYSIPT, +
DEVICE=2540, +
EQFADDR=EECQF, +
IQAREAI=TINBUFF1, +
IOAREA2=INRBUFF2Z, +
TYPEFLE=INPUT, +
WORKA=YES
SPACE
INBUFF1 DC CL80' ') INPUT BUFFER-1
INBUFF2 DC CL8D' ' INPUT BUFFER-2
MEND
Figure E-4 The DOS DEFIN macro.
MACRO

S&FILEIN DEFIN &EOF
AIF (T'&EQF EQ *I' OR T'&EQF EQ 'M').Al0 ECF ADDRESS VALID?
MNOTE 1,‘EOQF ADDRESS NOT DEFINED' NO -

SEOF CLOSE &FILEIN * GENERATE EOF ROUTINE
EOJ
WALO ANOP
SFILEIN DCB DDNAME=SYSIN, DEFINE INPUT FILE +
DEVD=Da, . +
DSORG=PS, +
EODAD=SEQF, +
MACRF=(GM)
MEND

Figure E-5 The OS DEFIN macro.

e

App.E Special Macros: INIT, PUTPR, DEFIN, DEFPR, EOJ 571

MACRO
&PRFILE DEFFR
&PRFILE DTFPR BLKSIZE=133, PEFINE CUTPUT FILE
CTLCHR=YES,
DEVADDR=SISLST,
DEVICE=3203,
IOAREAL=PRBUFF1,
ICAREAZ=PRBUFF2,
WORKA=YES
SPACE :
PRBUFFl DC CL133* OUTPUT BUFFER-1
PRBUFFZ IC CL133* ¢ OUTPUT BUFFER-2
SPACE

R

Figure E-6 The DQS DEFPR macro.

MACRO
&PRFILE DEFFR
&PRFILE DCB DDNAME=SYSPRINT,
DEVD=Da,
DSORG=FS,
RECFM=FBSM,
MACRF=(PM)
SYSPRINT EQU &PRFILE
ENTRY SYSPRINT
MEND

+ 4 4+

Figure E-7 The OS DEFPR macro.

MACRO
&LABEL EOJ
&LABEL L 13,SAVEAREA+4 END-OF-JOB

RETURN (i4,12) RETURN TO SUPERVISOR
MEND

Figure E-8 The OS EQJ macro.

The DEFPR macro defines the printer and assumes the use of a workarea
for output. (That is, you code PUT filename,workarea.) The DOS version,
shown in Fig. E-6, generates a DTFPR, whereas the OS version, shown in Fig.
E-7, generates a DCB. The particular entries may vary by installation.

DOS already has a simple EOJ macro. The OS EQJ macro, shown in Fig.
E-8, generates the load savearea and return and ties in with the OS INIT macro.

APPENDIX

EBCDIC CODE
REPRESENTATION

CODE TRANSLATION TABLE CODE TRANSLATION TABLE (Contd}
Tinstruction]| Grapivics and Controls | EBCDIC] Jinslruction] Graphics and Controls | EBLDIC
pecliHex| {RR) |BCDAC EHCOICED ASCHI| CardCode | Binary peclvex| (RO |BCOIC EBCOICIL ASCIt| CardCote | Binary
ol o N WA | P-0-1s4 | 00000000 DERL 1 (2] 0030 3000
1|01 SOH SoH -1 €000 0001 418 jcor) 0289 WK X1
HL sTX stx (e 0000 000 &2 | ADR M - 284 oK VR
i@ X ;M |ps 0000 00 ol |sor o + |o3ne 00 111
O ED PF —EOT | B a2 [MoR » [0030 1100
5|05 |BALR o e |25 0000 001 &5|20 | bdR =] - 0569 006 101
6|os |ecr 14 AKX | Res X0 oI MERE AX . 62 0 110
_1ler lece beL [N) 00 0111 lx Jswe BEL [0789 o0 11
8108 [SSK BS [R49 0000 100 48|30 {LFER (] T-L-0-1-89{ 001 000
Hm jIsk T jr-1s9 |oooxm 0|3 (UvEr 1 14 00110001
wio |sve Sk IF e {0000 |2 juEr SN 2 24 0011 006
njoe wr v |R3e9 |om0mR 5B e 3 349 001 001}
Rl [(R | 000 I R M |1ER] T G 00
Bl =} &k lpsee | 000011 (35 MR 3 5 549 ok
BlE jmvc S0 0 |pery |oxoqum sa{% |mR - uc 6 9 0011 01%
_E|tF {ote sl S jrtee {momu 5137 Sm B -, S |] 031101
RS DE DE | I-I-19 1 S4(38 |LER [(] 01t IO
AR TRITT w1 el 114 (007 000} i» |CR 8 19 0011 Y01
Ble e DC2 o2 |n-24 oo} 0030 SRi3A | A : 9 001 WO
Bln lwer ™ ocy_ | 134 0001 (OTY 2138 I XR Ly S 3-89 on pn
EIERED T I F13] [l g GF3C |MER [< T3] [ITH]
2|5 1ar N x| 1354 0001 901 1130 | DER NAK - 544 0a]1 101
2|6 [BS SYR | ne9 00010100 . 1% | AR > 4 W1 U
Bl [£ |1-74 wo e} Blx s SUB 2 124 ol 1
W% |18 CA . CAN | [1°B4 001 3000 MrAESD Sp Sp @ |nopunches 00000
5P |CR EM @ [i-1e9 ool X0 &l | AR 0300 0063
%A |AR c sog | 1259 001 00 |z |s1c DI 2] 0)0 0G0
e lse cul gsc_ 1329 oo wm &r)e |ic c lposs G0 MO
2F1C | MR IFS Fs |14 {000l DR o8 |4 |EX 0 |oey 030010%
2w ok 165 65 |{nse9 ool & |65 | BaL E 2054 0X00XN}
(K {ar %5 RS [I439 jeI NN o4 |ecT f R0+ 030 010
3 ¥ [ar s Us_ |u-139 feeormn nla jsc ¢ lpers apoa)r
2|2 |LPOR 3 FIZ e 2] | {H W [RCWS 0K0 DD
nla juoe 505] 0000001 Ble o i B4 0100 101
niz jos 53 » o |oes 00NN il f ¢ ¢)] o PP
A ECRET ¢ |oas 00 01 Iles Lsw . N ¥ (p3s oKD 01
36128 | HOR o s (372 0030 0300 6 [4C | MH o) < < L 245 KX 130
7S |LRoR U s |05 0030 0301 T e 1 ot ®n o jpsd oFm 101
3|3 |k 3, t o9 001 010 nle joo <] 0M0 1
Bizl | MR ESC . o714 001N Pl jove L] (I o _lprs I

572

App.F EBCDIC Code Represgntation 573

CODE TRANSLATION TABLE {Contd) CODE TRANSLATION TABLE {Contd}
Instruction] Graphics and Controls | EBCDIC Instruction| Graphics and Conirols EBCDIC
Dec.{ Hex fandt Format | BCIHC EBCOICID ASCH | CaréCode | Binary Dec|Hex| 1551 |BCDEC EBCDICID ASCII| CardCode | Binary
CIERED v & & 7 |® 001 000 56 19 |SI0,SI0F -3 L1948 | W01 10
151 Q {P-n-+ lomiawt BT 190 {Tio, a0l 3 BI58 Ly
elR R |ene4 {owimp 58 {95 [HsoHov % P-4 | w00ty
Bin s 38 | g 19 J%_J3en - L-N-T8 W0 G
CIERL] T[R4 {ONIoER ¥0 (%0 - TH-+8 1010 0000
5% o U IS4 oM W1 jAs _— 01 W01
%% |0 v |znes jowiom ¥ A2 s s no2 00
misTlx w_ {2114 (o A3 [ne3]
EIERY . X |24 (opiwo W ¥ u 0000
minlc Y IS o1 101 * A ' 185 W owL
s0(sala 1o Z |nes o1 W ¥ (A6 . w W06 LWOP
LNE 3 s 3 1 13-4 0161 oy wrlar x x 107 1010 0111
iﬁsc [= A 23] 0101 1K ¥5 [AE Y ¥ -2 3 030 1000
B350)0] 1) 1 1354 01 11 A z z 149 00 X0]
sl fa : s r el opLun 6 | AA 102 NE X0
% |5 | LS!.,_ A = = . i1 ol il LA [1034 00 01
‘9|6 | S0 - - -+ {1 [T e iAC {STNSMTCY T fise=3 0 10
91 |61 [[O % | 0120 0001 1m |4D |STOSM 1 58 %0 191
95| b (NG29 U T4 {aE 1S16P s > 1048 0K 10
wnig e 1oae topmas s AF lme 51 . 1072 X1t
10 4 | [oloem 6 |80 . 2118 | 0o
| ORT] + |Ie5e [078t [tma = 3 Rl | BI10000
e (& t 49 oo 118 | B2 ISer below 2 P2 Hnoe
B |67 | wxp 9 _|ne19 100N s 3 003 [jonoen
TG K {1085 0L Mo W8 - P14) 1011 GI0
w16 fco i 14 o190 X0} i . 205 | WM
05 (64 [AD H | RN w2 st su:ri.},ts . -0 200
X7 {68 | SO SN k038 o100 011 | iy jhen k4 07 __|opomn
W08 (6C [MD = % £ 1 Jous 1% 1100 W |88 ’ BN0€ | B
¥ {60 [DD v - - m |05 o1l 185 [. 209 Junem
0 & | aw \ > > a o6 [T 31T 19 184 |€S }ns p-l-0-2-8 | 0h o0
nie [sw - 2t o |ois oo Mt 1 {BB (DS I 2-11-0-3-8 | 1011 o1t
1Z|M [S] =110 [T 1% {8C = B-T-0-4-8 | W1 11
mBin q [R-n0-19 {omor i [BD [CM] ZAg54 | e
M| r |e-ntee [aimn N0 186 | STCM (RS + 11068 | Wit aw
min s 211 mumit mieF fiom - zn472 | ennn
TR [2 |ollloxe wlo ? { 20 100 0000
nin v | R-0s4 [oniom ma A A A 2 1000 (201
s |6 v prgia s 2 BRT 1) nilcz B s s 2 M0 000
m|r | w_ |Pets fomom ps c € C 23 1000011
BOin i T |R-NRS | o1t 00 i o) BX []
e e N y {13 0131 101 wls E E £] DO WL
22| K b P 011 B% peics F F ¥ 26 K001
Bl | [LI B N | 38 011t 01 mic [[JELTT Y
BUTiC W €& ¢ 6 H I=] 0111 1300 X018 (1 CC] §7=3 TR B0
5 [0 J DE B L H >3 L1181 o11ce i [1000 Y01
2 a0 e T onge xz|ea o4 | 10 OP
ol il B3] v - {73 onim 2BiCE 20380 | 1¥0 103
2810 [ssm 5] B8 B0 0000 4| CcC 3 A4 m
|8 a a 24 0000001 a5t eo 20544 | 100101
™R jLpsw S) 202 oo 2|] 20444 (DO NN
pLIB | c ¢ 203 WOEHN mice i oun
{8 [WRD oy d d 20~ 00 5| 60 f ¥ T 101 606
I (5 |RDD e ¢ o5 00 0101 25 101 | mvn 1 1) 11 150} 00t
o % e t 1 n-e$ moomw 2w e fmve X KK 12 o
5% (0 g 267 1000 8111 2im |mvz L L L u3 110N
B6 | & | 5RL h h 2 POWD 22| D8 (NC CL 1 1%1
o (8 (s 1 J0a ¥ 101 Bl o ¥ W N ns 10010101
Bt |8A | SRA w028 OB 28 D6 {00 ¢ O o 16 101 0100
{8 Ista lgs 1 o3 000 3011 sy |xe P PP n-r mioiy
0 {3C | SROL < TO48 (DRI 26|08 Q T Q 101 00
M1 |80 st i 2054 i W |, R R B 4 1% 101
w2 % |Sroa . o6l [0ON® oA B84 | 101 00
W E jam + b ain woit 2elps 1-3-24_| 101 W21
W W [5m IS Mool I eC IR E-L485 | 10] 100
B9 i g] WO 2100 {IRT 211589 101 1%01
we sz [mvi [£ X pro1 =3 W01 000 z2 e JEo ¢35 | 1Imuw
MR TS s 11 2-13 0oLt 2B joF 1EoMX 11784 | 101 1
w9 NI CRC Frois) Wiom 2| ¥ N 2% 1000500
{9 feu non i] WoN 5 [El 1-0-19 1130 000k
vo % [o1 {5H P e winp 2| s 5 3 2 U0W0
BLIST it ') =117 001 o111 =8 h§ h A -3 1w
B[R M kS T & 13 301 1000 2% 1] U o B NPoxD
5 |» ror o1y 1] W01 |5 v v v npowl
B4 {9 pud lwoipn D W ww -6 BRI
A 1) 3 o) o S - T R T 7] XX x 25 Ineen

574 EBCDIC Code Representation App. F

CODE TRANSLATION TABLE (Contd) CODE TRANSLATION TABLE (Contd)
Instrection{ Graphics ang Condrobs €B8C0IC 5 tnstruction | Graphics and Controls £8COIC

Dec.| Bex |and Format | BCBIC EBCDICID ASCHt | CardCode | Ginary DecHer| 1350 lBCDIC EBCDICID ASCH| CardCode | Binary
&\ Y Y ¥ 0-3 110 X0 | L] T4 & FTEER T3]
=[] 4 z 2 0 ¥ 25 |¥5 H 5 5 5 1mnioyl
24 ea 10284 | 110 0P 24 | €5 6 6 & 6 MO
B3 |t 10389 | 110 313 AT 7 L 11 T | 1nio1i1
BEYEC] 104849 | 110 10 22| R | 2AP z LI ;] 111 X0
1 |ED 10584 | U0 101 |’ |cp L1 9 9 9 11 ¥t
=|e e T O A aveii
e | 0-7-8-5__{ 110 11T 128 | 118 3010
FACRED [o 0 5] 1111 0000 Z[FC [mr R-11-e-4-0) 111! D00
21 [F1 |mve 1 11 1 1o 23 |0 fOP 210584 1111 101
W22 | PACK 2 2 2 2 HHOP ool i 2-11-0-6-85] 111 11D
283 {inm 3 3 3 Hne B 0 121-0-7-84) 111}]I

/4

o

1\\ /r

- APPENDIX

G

SUMMARY
OF ASSEMBLER
DECLARATIVES

Here is a list of the assembler data types for defining DC and DS declaratives.

575

576

Summary of Assembler Declaratives

Implied | Maximumn Trumcation/
Type Format length length Aligniment padding
A address 4 4 word left
B binary digits - 256 byte left
C character? - 256 byte right
D. floating-point — 8 8 doubleword right
long
E floating.point —— 4 8 word xight
- short
¥ fized-point binary 4 8 word left
H fixed-point binary 2 8 haltword left
L floating-point —— 16 16 doubleword right
extended
P packed decimal — 16 byte left
Q symbol naming a 4 4 word left
DXD or DSECTZ
S address in base/ 2 2 halfword -
displacement
format
v external defined 4 4 word left
address
X hexadecimal digits! - 256 byte left
Y address 2 2 halfword left
z zoned decimal - 16 byte left

App. G

1For DS, C and X type declaratives may have a defined length up to 65,535. 2Q-type declaratives
are available only for F-level Assembler.

APPENDIX

SUMMARY
OF ASSEMBLER
DIRECTIVES

Here is a list of the variouns assembler directives in each general category. Direc-
tives marked with an asterisk (*) are available only under OS/VS or VM.

Program sectioning and linking

COM Identify beginning of a comamon control section.
CSECT Identify start or resumption of a control section.

CXD* Cumulative length of an external dummy section.
DSECT Identify start or resumption of a dummy control section.
DXD* Define an external dummy section.

ENTRY Identify an entry point, referenced in another assembly.
EXTRN Identify an external symbol, defined in another assembly.
START Define start of the first control section in a program.
WXTRN Identify a weak external symbol (suppresses search of librar-

ies).
Base register assignment

DRO?P Discontinue use of a base register.
USING Indicate sequence of base registers to use,

577

578

Summary of Assembler Directives App. H

Listing control

EJECT Start assembled listing on next page.

PRINT Control assembled listing (operands are ON/OFF, GEN/NO-
GEN, and DATA/NODATA).

SPACE Space n lines in the assembled listing.
TITLE Provide 2 title at the top of each page of listing.

Program control

CNOP Conditional no-operation (see next section).

COPY Copy code from an assembler source library.

END Signal end of an assembly module.

EQU Equate name or number to a symbol.

ICTL Define the format of following source statements.
ISEQ Start or end sequencing of source input statements.

LTORG Begin the literal pool.
OPSYN* Equate a name operation code with an operand op code.

ORG Set the location counter.

POP* Recover status of PRINT/USING directives saved by last PUSH.
PUNCH Provide output on cards.

PUSH* Save current PRINT/USING status.

REPRO Reproduce the following card.

Macro definition

MACRO Begin a macro definition.
MEND Terminate a macro definition.
MEXIT Exit from 2 macro definition.
MNOTE Display a maczo note.

Conditional assembly

ACTR Set loop counter for conditional assembly.
AGO Branch to sequence symbol.

ATF . Conditional branch to sequence symbol.
ANOP Assembly no-operation.

GBLA Define global SETA symbol.

GELB Define global SETB symbol..

GBLC Define global SETC symbol.

LCLA Define local SETA symbol.

1CLB Define local SETB symbol.

7

App. H Summary of Assembler Directives 579

LCLC Define local SETC symbol.
SETA Set an arithmetic variable symbol.
SETB Set a binary variable symbol.
SETC Set a character variable symbol.

Conditional No-Operation (CNOP)

The purpose of CNOP is to enable you to align instructions on integral boundaries.
You would most likely use CNOP where you have defined local declaratives at the
end of a subroutine and want to ensure that the first insgruction for the next
subroutine begins on an even boundary.

There are six variations on CNOP, depending on whether you want alignment
based on fullword or doubleword boundaries. Operand 2 designates fullword (4)
or doubleword (8) alignment. Operand 1 determines the particular location in
the fuliword or doubleword. To force the correct alignment, CNOP generates
from one to three NOP instructions, each 2 bytes long.

Fullword alignment

CNDP 0,4 On fullword boundary

CNOP 2,4 On address aligned on halfword boundary in middle of aligned
fullword

Doubleword alignment

CNOP 0,8 On doubleword boundary

CNDP 2,8 On second halfword immediately following doubleword
boundary :

CNOP 4,8 On fellword boundary in middle of aligned doubleword
CNOP 6,8 On fourth halfword boundary in aligned doubleword

A common requirement for alignment on a fullword boundary is simply CNOP
0.,4. If the assembler location counter was at X762, this CNOP would generate
one NOP so that the following instruction begins at X'764. Note, however, that
if the location counter is-at an odd-numbered address, the assembler forces normal
alignment before processing the CNOP.

Relevant 1BM reference manuals

GC33-4010 OS/VS-DOS/VS-VM/370 Assembler Language
GC24-3414 DOS Assembler Language

APPENDIX

ANSWERS
TO SELECTED
PROBLEMS

g

Chapter 1

1-4. (a) 7; ©) 25.
1-5. (a) 110; {¢) 10010.
1-6. (@) A; () 12; (e} 20.
1-7. (a) B; (¢) 12; (e) 1A.
1-11. (@) 64 X 1,024 = 65,536.
1-18. (a) binary = 1111 0101; hex = F3.
1-19. (=) 370 F3F7F(11110011 11110111 11110000
(c) Sam E28194 11100010 100060001 10010100 (lowercase)
1-21. (a) PAT D7CI1E3 11010111 11000001 11100011

Chapter 2

2-1. (a) A unit of data, such as employee number or rate of pay.
2-2. (a) The instruction that a computer executes.

2-5. (a) The program as written in symbolic language, prior to assemmbly.

